Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, England.
Centre of Excellence for Mass Spectrometry, The James Black Centre, King's College London, London, England.
mBio. 2022 Aug 30;13(4):e0171422. doi: 10.1128/mbio.01714-22. Epub 2022 Jul 26.
Human immunodeficiency virus type-1 (HIV-1) infection is potently inhibited by human myxovirus resistance 2 (MX2/MxB), which binds to the viral capsid and blocks the nuclear import of viral DNA. We have recently shown that phosphorylation is a key regulator of MX2 antiviral activity, with phosphorylation of serine residues at positions 14, 17, and 18 repressing MX2 function. Here, we extend the study of MX2 posttranslational modifications and identify serine and threonine phosphorylation in all domains of MX2. By substituting these residues with aspartic acid or alanine, hence mimicking the presence or absence of a phosphate group, respectively, we identified key positions that control MX2 antiviral activity. Aspartic acid substitutions of residues Ser306 or Thr334 and alanine substitutions of Thr343 yielded proteins with substantially reduced antiviral activity, whereas the presence of aspartic acid at positions Ser28, Thr151, or Thr343 resulted in enhanced activity: referred to as hypermorphic mutants. In some cases, these hypermorphic mutations, particularly when paired with other MX2 mutations (e.g., S28D/T151D or T151D/T343A) acquired the capacity to inhibit HIV-1 capsid mutants known to be insensitive to wild-type MX2, such as P90A or T210K, as well as MX2-resistant retroviruses such as equine infectious anemia virus (EIAV) and murine leukemia virus (MLV). This work highlights the complexity and importance of MX2 phosphorylation in the regulation of antiviral activity and in the selection of susceptible viral substrates. Productive infection by human immunodeficiency virus type-1 (HIV-1) requires the import of viral replication complexes into the nuclei of infected cells. Myxovirus resistance 2 (MX2/MxB) blocks this step, halting nuclear accumulation of viral DNA and virus replication. We recently demonstrated how phosphorylation of a stretch of three serines in the amino-terminal domain of MX2 inhibits the antiviral activity. Here, we identify additional positions in MX2 whose phosphorylation status reduces or enhances antiviral function (hypomorphic and hypermorphic variants, respectively). Importantly, hypermorphic mutant proteins not only increased inhibitory activity against wild-type HIV-1 but can also exhibit antiviral capabilities against HIV-1 capsid mutant viruses that are resistant to wild-type MX2. Furthermore, some of these proteins were also able to inhibit retroviruses that are insensitive to MX2. Therefore, we propose that phosphorylation comprises a major element of MX2 regulation and substrate determination.
人类免疫缺陷病毒 1 型(HIV-1)感染被人类黏液病毒抗性 2(MX2/MxB)强力抑制,该蛋白结合病毒衣壳并阻止病毒 DNA 的核内输入。我们最近表明,磷酸化是 MX2 抗病毒活性的关键调节剂,位于位置 14、17 和 18 的丝氨酸残基的磷酸化抑制 MX2 功能。在这里,我们扩展了 MX2 翻译后修饰的研究,并鉴定了 MX2 所有结构域中的丝氨酸和苏氨酸磷酸化。通过用天冬氨酸或丙氨酸取代这些残基,分别模拟磷酸基团的存在或不存在,我们确定了控制 MX2 抗病毒活性的关键位置。残基 Ser306 或 Thr334 的天冬氨酸取代和 Thr343 的丙氨酸取代产生的蛋白抗病毒活性大大降低,而位置 Ser28、Thr151 或 Thr343 上的天冬氨酸存在导致活性增强:称为超构象突变体。在某些情况下,这些超构象突变体,特别是与其他 MX2 突变(例如 S28D/T151D 或 T151D/T343A)结合时,获得了抑制已知对野生型 MX2 不敏感的 HIV-1 衣壳突变体的能力,例如 P90A 或 T210K,以及 MX2 抗性逆转录病毒,例如马传染性贫血病毒(EIAV)和鼠白血病病毒(MLV)。这项工作强调了 MX2 磷酸化在调节抗病毒活性和选择易感病毒底物方面的复杂性和重要性。
人类免疫缺陷病毒 1 型(HIV-1)的有效感染需要将病毒复制复合物导入感染细胞的细胞核中。黏液病毒抗性 2(MX2/MxB)阻断此步骤,阻止病毒 DNA 和病毒复制在核内积累。我们最近证明了 MX2 氨基末端结构域中三个丝氨酸的磷酸化如何抑制抗病毒活性。在这里,我们确定了 MX2 中其他降低或增强抗病毒功能的磷酸化位点(分别为低功能变体和高功能变体)。重要的是,高构象突变体蛋白不仅增加了对野生型 HIV-1 的抑制活性,而且还能表现出对野生型 MX2 耐药的 HIV-1 衣壳突变病毒的抗病毒能力。此外,其中一些蛋白还能够抑制对 MX2 不敏感的逆转录病毒。因此,我们提出磷酸化是 MX2 调节和底物决定的主要因素。