Suppr超能文献

传染病传播个体层面模型中的接触网络不确定性。

Contact network uncertainty in individual level models of infectious disease transmission.

作者信息

Almutiry Waleed, Deardon Rob

机构信息

Mathematics, Arts and Science College in Ar Rass, Qassim University, Buraidah, Saudi Arabia.

Production Animal Health, University of Calgary, Calgary, Alberta, Canada.

出版信息

Stat Commun Infect Dis. 2021 Jan 8;13(1):20190012. doi: 10.1515/scid-2019-0012. eCollection 2021 Jan 1.

Abstract

Infectious disease transmission between individuals in a heterogeneous population is often best modelled through a contact network. This contact network can be spatial in nature, with connections between individuals closer in space being more likely. However, contact network data are often unobserved. Here, we consider the fit of an individual level model containing a spatially-based contact network that is either entirely, or partially, unobserved within a Bayesian framework, using data augmented Markov chain Monte Carlo (MCMC). We also incorporate the uncertainty about event history in the disease data. We also examine the performance of the data augmented MCMC analysis in the presence or absence of contact network observational models based upon either knowledge about the degree distribution or the total number of connections in the network. We find that the latter tend to provide better estimates of the model parameters and the underlying contact network.

摘要

在异质人群中,个体间的传染病传播通常通过接触网络进行最佳建模。这种接触网络本质上可能是空间性的,空间距离较近的个体之间建立联系的可能性更大。然而,接触网络数据往往难以观测到。在此,我们考虑一个个体层面的模型,该模型包含一个基于空间的接触网络,在贝叶斯框架内,这个网络要么完全未被观测到,要么部分未被观测到,我们使用数据增强马尔可夫链蒙特卡罗(MCMC)方法进行分析。我们还将疾病数据中事件历史的不确定性纳入其中。我们还研究了在存在或不存在基于网络度分布知识或网络连接总数的接触网络观测模型的情况下,数据增强MCMC分析的性能。我们发现,后者往往能对模型参数和潜在接触网络提供更好的估计。

相似文献

1
Contact network uncertainty in individual level models of infectious disease transmission.
Stat Commun Infect Dis. 2021 Jan 8;13(1):20190012. doi: 10.1515/scid-2019-0012. eCollection 2021 Jan 1.
3
Spatial approximations of network-based individual level infectious disease models.
Spat Spatiotemporal Epidemiol. 2013 Sep;6:59-70. doi: 10.1016/j.sste.2013.07.001. Epub 2013 Jul 22.
4
Geographically dependent individual-level models for infectious diseases transmission.
Biostatistics. 2022 Jan 13;23(1):1-17. doi: 10.1093/biostatistics/kxaa009.
6
Ensemble learning methods of inference for spatially stratified infectious disease systems.
Int J Biostat. 2024 Apr 10;20(2):507-529. doi: 10.1515/ijb-2023-0102. eCollection 2024 Nov 1.
8
Exploring heterogeneity in tumour data using Markov chain Monte Carlo.
Stat Med. 2003 May 30;22(10):1691-707. doi: 10.1002/sim.1441.

引用本文的文献

1
Advancing infection profiling under data uncertainty through contagion potential.
PLoS One. 2025 Aug 12;20(8):e0329828. doi: 10.1371/journal.pone.0329828. eCollection 2025.
2
An algorithm to build synthetic temporal contact networks based on close-proximity interactions data.
PLoS Comput Biol. 2024 Jun 13;20(6):e1012227. doi: 10.1371/journal.pcbi.1012227. eCollection 2024 Jun.

本文引用的文献

3
Supervised learning and prediction of spatial epidemics.
Spat Spatiotemporal Epidemiol. 2014 Oct;11:59-77. doi: 10.1016/j.sste.2014.08.003. Epub 2014 Sep 16.
4
Spatial Transmission of 2009 Pandemic Influenza in the US.
PLoS Comput Biol. 2014 Jun 12;10(6):e1003635. doi: 10.1371/journal.pcbi.1003635. eCollection 2014 Jun.
5
Spatial approximations of network-based individual level infectious disease models.
Spat Spatiotemporal Epidemiol. 2013 Sep;6:59-70. doi: 10.1016/j.sste.2013.07.001. Epub 2013 Jul 22.
6
Latent conditional individual-level models for infectious disease modeling.
Int J Biostat. 2013 Aug 3;9(1):/j/ijb.2013.9.issue-1/ijb-2013-0026/ijb-2013-0026.xml. doi: 10.1515/ijb-2013-0026.
7
A network-based analysis of the 1861 Hagelloch measles data.
Biometrics. 2012 Sep;68(3):755-65. doi: 10.1111/j.1541-0420.2012.01748.x. Epub 2012 Feb 24.
8
Networks and the epidemiology of infectious disease.
Interdiscip Perspect Infect Dis. 2011;2011:284909. doi: 10.1155/2011/284909. Epub 2011 Mar 16.
9
Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems.
J R Soc Interface. 2009 Feb 6;6(31):187-202. doi: 10.1098/rsif.2008.0172.
10
SIR dynamics in random networks with heterogeneous connectivity.
J Math Biol. 2008 Mar;56(3):293-310. doi: 10.1007/s00285-007-0116-4. Epub 2007 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验