School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
ACS Nano. 2022 Sep 27;16(9):13684-13694. doi: 10.1021/acsnano.2c04182. Epub 2022 Jul 26.
Photonic bio-organic multiphase structures are suggested here for integrated thin-film electronic nets with multilevel logic elements for multilevel computing via a reconfigurable photonic bandgap of chiral biomaterials. Herein, inspired by an artificial intelligence system with efficient information integration and computing capability, the photonically active dielectric layer of chiral nematic cellulose nanocrystals is combined with printed-in p- and n-type organic semiconductors as a bifunctional logical element. These adaptive logic elements are capable of triggering tailored quantized electrical output signals under light with different photon energy and at the different photonic bandgaps of the active dielectric layer. The bifunctional structures enable complex memory behavior upon repetitive changes of photonic bandgap (controlled by expansion/contraction of chiral nematic pitch) and photon energy (controlled by light absorption wavelength of complementary organic semiconductor layers), exhibiting effectively a reconfigurable ternary logic response. This proof-of-concept bio-assisted multivalued logic structure facilitates an optical computing system for low-power optical information processing integrated with human-machine interfaces.
本文提出了光子生物有机多相结构,用于集成薄膜电子网络,具有多级逻辑元件,可通过手性生物材料的可重构光子带隙进行多级计算。在这里,受具有高效信息集成和计算能力的人工智能系统的启发,手性向列纤维素纳米晶体的光子活性介电层与印刷的 p 型和 n 型有机半导体相结合,作为双功能逻辑元件。这些自适应逻辑元件能够在手性向列 pitch 伸缩(通过手性向列 pitch 的伸缩控制)和光子能量(通过互补有机半导体层的光吸收波长控制)的不同光子带隙下,对不同能量的光产生定制的量化电输出信号,从而表现出有效的可重构三进制逻辑响应。这种基于生物辅助的多值逻辑结构的概念验证为低功耗光信息处理与人机接口集成的光学计算系统提供了便利。