Electrical Engineering Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Institute of Materials Science and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Nature. 2020 Nov;587(7832):72-77. doi: 10.1038/s41586-020-2861-0. Epub 2020 Nov 4.
The growing importance of applications based on machine learning is driving the need to develop dedicated, energy-efficient electronic hardware. Compared with von Neumann architectures, which have separate processing and storage units, brain-inspired in-memory computing uses the same basic device structure for logic operations and data storage, thus promising to reduce the energy cost of data-centred computing substantially. Although there is ample research focused on exploring new device architectures, the engineering of material platforms suitable for such device designs remains a challenge. Two-dimensional materials such as semiconducting molybdenum disulphide, MoS, could be promising candidates for such platforms thanks to their exceptional electrical and mechanical properties. Here we report our exploration of large-area MoS as an active channel material for developing logic-in-memory devices and circuits based on floating-gate field-effect transistors (FGFETs). The conductance of our FGFETs can be precisely and continuously tuned, allowing us to use them as building blocks for reconfigurable logic circuits in which logic operations can be directly performed using the memory elements. After demonstrating a programmable NOR gate, we show that this design can be simply extended to implement more complex programmable logic and a functionally complete set of operations. Our findings highlight the potential of atomically thin semiconductors for the development of next-generation low-power electronics.
基于机器学习的应用日益重要,这推动了人们对专用、节能电子硬件的开发需求。与具有独立处理和存储单元的冯·诺依曼架构相比,受大脑启发的内存计算在逻辑运算和数据存储中使用相同的基本设备结构,从而有望大幅降低以数据为中心的计算的能源成本。尽管有大量研究专注于探索新的设备架构,但适合此类设备设计的材料平台的工程设计仍然是一个挑战。二维材料(如半导体二硫化钼,MoS)由于其出色的电学和机械性能,可能成为此类平台的有前途的候选材料。在这里,我们报告了我们对大面积 MoS 的探索,以开发基于浮栅场效应晶体管(FGFET)的内存中逻辑设备和电路。我们的 FGFET 的电导可以精确且连续地调节,这使我们能够将它们用作可重构逻辑电路的构建块,其中逻辑运算可以直接使用存储元件来执行。在演示了可编程 NOR 门之后,我们表明该设计可以简单地扩展以实现更复杂的可编程逻辑和一套完整的功能操作。我们的研究结果强调了原子级薄半导体在开发下一代低功耗电子产品方面的潜力。