Suppr超能文献

利用轻型汽油车更新后的排放因子和实际交通监测大数据对交通拥堵期间的道路车辆排放进行量化。

Quantifying on-road vehicle emissions during traffic congestion using updated emission factors of light-duty gasoline vehicles and real-world traffic monitoring big data.

作者信息

Chen Xue, Jiang Linhui, Xia Yan, Wang Lu, Ye Jianjie, Hou Tangyan, Zhang Yibo, Li Mengying, Li Zhen, Song Zhe, Li Jiali, Jiang Yaping, Li Pengfei, Zhang Xiaoye, Zhang Yang, Rosenfeld Daniel, Seinfeld John H, Yu Shaocai

机构信息

Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China.

Bytedance Inc., Hangzhou, Zhejiang 310058, China.

出版信息

Sci Total Environ. 2022 Nov 15;847:157581. doi: 10.1016/j.scitotenv.2022.157581. Epub 2022 Jul 23.

Abstract

Light-duty gasoline vehicles (LDGVs) have made up >90 % of vehicle fleets in China since 2019, moreover, with a high annual growth rate (> 10 %) since 2017. Hence, accurate estimates of air pollutant emissions of these fast-changing LDGVs are vital for air quality management, human healthcare, and ecological protection. However, this issue is poorly quantified due to insufficient reserves of timely updated LDGV emission factors, which are dependent on real-world activity levels. Here we constructed a big dataset of explicit emission profiles (e.g., emission factors and accumulated mileages) for 159,051 LDGVs based on an official I/M database by matching real-time traffic dynamics via real-world traffic monitoring (e.g., traffic volumes and speeds). Consequently, we provide robust evidence that the emission factors of these LDGVs follow a clear heavy-tailed distribution. The top 10 % emitters contributed >60 % to the total fleet emissions, while the bottom 50 % contributed <10 %. Such emission factors were effectively reduced by 75.7-86.2 % as official emission standards upgraded gradually (i.e., from China 2 to China 5) within 13 years from 2004 to 2017. Nevertheless, such achievements would be offset once traffic congestion occurred. In the real world, the typical traffic congestions (i.e., vehicle speed <5 km/h) can lead to emissions 5- 9 times higher than those on non-congested roads (i.e., vehicle speed >50 km/h). These empirical analyses enabled us to propose future traffic scenarios that could harmonize emission standards and traffic congestion. Practical approaches on vehicle emission controls under realistic conditions are proposed, which would provide new insights for future urban vehicle emission management.

摘要

自2019年以来,轻型汽油车(LDGV)在中国的汽车保有量中占比超过90%,此外,自2017年以来其年增长率较高(>10%)。因此,准确估算这些快速变化的轻型汽油车的空气污染物排放量对于空气质量管控、人类健康保护和生态环境保护至关重要。然而,由于及时更新的轻型汽油车排放因子储备不足,这一问题的量化程度很低,而排放因子取决于实际活动水平。在此,我们基于官方的I/M数据库,通过实际交通监测(如交通流量和速度)匹配实时交通动态,构建了一个包含159,051辆轻型汽油车明确排放特征(如排放因子和累计里程)的大数据集。结果,我们提供了有力证据表明这些轻型汽油车的排放因子呈现明显的重尾分布。排放量最高的10%的车辆对总车队排放量的贡献超过60%,而排放量最低的50%的车辆贡献不到10%。随着2004年至2017年的13年间官方排放标准逐步升级(即从国二到国五),此类排放因子有效降低了75.7 - 86.2%。然而,一旦发生交通拥堵,这些成果将被抵消。在现实世界中,典型的交通拥堵(即车速<5公里/小时)会导致排放量比非拥堵道路(即车速>50公里/小时)高出5 - 9倍。这些实证分析使我们能够提出可协调排放标准和交通拥堵的未来交通情景。我们提出了在现实条件下车辆排放控制的实用方法,这将为未来城市车辆排放管理提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验