Luo Zhenyu, He Tingkun, Lv Zhaofeng, Zhao Junchao, Zhang Zhining, Wang Yongyue, Yi Wen, Lu Shangshang, He Kebin, Liu Huan
State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, Beijing, China.
Patterns (N Y). 2025 Mar 3;6(4):101186. doi: 10.1016/j.patter.2025.101186. eCollection 2025 Apr 11.
The ever-increasing stream of big data offers potential for deep decarbonization in the transportation sector but also presents challenges in extracting interpretable insights due to its complexity and volume. This overview discusses the application of transportation big data to help understand carbon dioxide emissions and introduces how artificial intelligence models, including machine learning (ML) and deep learning (DL), are used to assimilate and understand these data. We suggest using ML to interpret low-dimensional data and DL to enhance the predictability of data with spatial connections across multiple timescales. Overcoming challenges related to algorithms, data, and computation requires interdisciplinary collaboration on both technology and data.
源源不断增长的大数据为交通运输部门的深度脱碳提供了潜力,但由于其复杂性和体量,在提取可解释的见解方面也带来了挑战。本概述讨论了交通大数据的应用,以帮助理解二氧化碳排放,并介绍了如何使用包括机器学习(ML)和深度学习(DL)在内的人工智能模型来同化和理解这些数据。我们建议使用机器学习来解释低维数据,并使用深度学习来增强跨多个时间尺度具有空间连接的数据的可预测性。克服与算法、数据和计算相关的挑战需要在技术和数据方面进行跨学科合作。