Chi Aobing, Zeng Chengbi, Guo Yufu, Miao Hong
College of Electrical Engineering, Sichuan University, Chengdu 610044, China.
Entropy (Basel). 2022 Jul 17;24(7):988. doi: 10.3390/e24070988.
In order to overcome the spectral interference of the conventional Fourier transform in the International Electrotechnical Commission framework, this paper introduces a Bregman-split-based compressive sensing (BSCS) method to estimate the Taylor-Fourier coefficients in a multi-frequency dynamic phasor model. Considering the DDC component estimation, this paper transforms the phasor problem into a compressive sensing model based on the regularity and sparsity of the dynamic harmonic signal distribution. It then derives an optimized hybrid regularization algorithm with the Bregman split method to reconstruct the dynamic phasor estimation. The accuracy of the model was verified by using the cross entropy to measure the distribution differences of values. Composite tests derived from the dynamic phasor test conditions were then used to verify the potentialities of the BSCS method. Simulation results show that the algorithm can alleviate the impact of dynamic signals on phasor estimation and significantly improve the estimation accuracy, which provides a theoretical basis for P-class phasor measurement units (PMUs).
为了克服国际电工委员会框架下传统傅里叶变换的频谱干扰,本文引入了一种基于布雷格曼分裂的压缩感知(BSCS)方法,用于估计多频动态相量模型中的泰勒 - 傅里叶系数。考虑到直接数字下变频(DDC)分量估计,本文基于动态谐波信号分布的正则性和稀疏性,将相量问题转化为压缩感知模型。然后,利用布雷格曼分裂方法推导了一种优化的混合正则化算法,以重建动态相量估计。通过使用交叉熵来测量值的分布差异,验证了模型的准确性。随后,基于动态相量测试条件进行的综合测试验证了BSCS方法的潜力。仿真结果表明,该算法可以减轻动态信号对相量估计的影响,并显著提高估计精度,为P类相量测量单元(PMU)提供了理论依据。