Smith David S, Gore John C, Yankeelov Thomas E, Welch E Brian
Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232, USA.
Int J Biomed Imaging. 2012;2012:864827. doi: 10.1155/2012/864827. Epub 2012 Feb 1.
Compressive sensing (CS) has been shown to enable dramatic acceleration of MRI acquisition in some applications. Being an iterative reconstruction technique, CS MRI reconstructions can be more time-consuming than traditional inverse Fourier reconstruction. We have accelerated our CS MRI reconstruction by factors of up to 27 by using a split Bregman solver combined with a graphics processing unit (GPU) computing platform. The increases in speed we find are similar to those we measure for matrix multiplication on this platform, suggesting that the split Bregman methods parallelize efficiently. We demonstrate that the combination of the rapid convergence of the split Bregman algorithm and the massively parallel strategy of GPU computing can enable real-time CS reconstruction of even acquisition data matrices of dimension 4096(2) or more, depending on available GPU VRAM. Reconstruction of two-dimensional data matrices of dimension 1024(2) and smaller took ~0.3 s or less, showing that this platform also provides very fast iterative reconstruction for small-to-moderate size images.
在某些应用中,压缩感知(CS)已被证明能够显著加快磁共振成像(MRI)采集速度。作为一种迭代重建技术,CS MRI重建可能比传统的傅里叶逆重建更耗时。我们通过使用分裂Bregman求解器结合图形处理单元(GPU)计算平台,将CS MRI重建速度提高了高达27倍。我们发现的速度提升与我们在该平台上测量的矩阵乘法速度提升相似,这表明分裂Bregman方法能够高效地并行化。我们证明,分裂Bregman算法的快速收敛与GPU计算的大规模并行策略相结合,能够实现对维度为4096(2)或更大的采集数据矩阵进行实时CS重建,具体取决于可用的GPU显存。对于维度为1024(2)及更小的二维数据矩阵,重建时间约为0.3秒或更短,这表明该平台对于中小尺寸图像也能提供非常快速的迭代重建。