Ibañez Manuel Vicente, Leonardi Rodrigo Jorge, Krujatz Felix, Heinrich Josué Miguel
Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Ciudad Universitaria (Paraje El Pozo), Santa Fe 3000, Argentina.
Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01069 Dresden, Germany.
Life (Basel). 2022 Jul 8;12(7):1014. doi: 10.3390/life12071014.
The development of tools to predict the photobioreactors' (PBRs) productivity is a significant concern in biotechnology. To this end, it is required to know the light availability inside the cultivation unit and combine this information with a suitable kinetic expression that links the distribution of radiant energy with the cell growth rate. In a previous study, we presented and validated a methodology for assessing the radiative properties necessary to address the light distribution inside a PBR for varying illuminating conditions through the cultivation process of a phototrophic microorganism. Here, we sought to utilise this information to construct a predictive tool to estimate the productivity of an autotrophic bioprocess carried out in a 100 [L] tubular photobioreactor (TPBR). Firstly, the time-dependent optical properties over ten batch cultures of were calculated. Secondly, the local volumetric rate of photon absorption was assessed based on a physical model of the interaction of the radiant energy with the suspended biomass, together with a Monte Carlo simulation algorithm. Lastly, a kinetic expression valid for low illumination conditions has been utilised to reproduce all the cultures' experimentally obtained dry weight biomass concentration values. Taken together, time-dependent radiative properties and the kinetic model produced a valuable tool for the study and scaling up of TPBRs.
开发用于预测光生物反应器(PBR)生产力的工具是生物技术领域的一个重要关注点。为此,需要了解培养单元内部的光照情况,并将此信息与一个合适的动力学表达式相结合,该表达式将辐射能分布与细胞生长速率联系起来。在之前的一项研究中,我们提出并验证了一种方法,用于评估在光养微生物的培养过程中,针对不同光照条件下解决PBR内部光分布所需的辐射特性。在此,我们试图利用这些信息构建一个预测工具,以估算在100升管式光生物反应器(TPBR)中进行的自养生物过程的生产力。首先,计算了十个分批培养过程中随时间变化的光学特性。其次,基于辐射能与悬浮生物质相互作用的物理模型以及蒙特卡罗模拟算法,评估了局部光子吸收体积速率。最后,利用一个适用于低光照条件的动力学表达式来重现所有培养物实验获得的干重生物量浓度值。综上所述,随时间变化的辐射特性和动力学模型为TPBR的研究和放大提供了一个有价值的工具。