Suppr超能文献

使用响应面法(RSM)对光色、氯化钠和葡萄糖浓度对生物质产量及质量的影响进行建模与优化。

Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Using Response Surface Methodology (RSM).

作者信息

Nosratimovafagh Ahmad, Fereidouni Abolghasem Esmaeili, Krujatz Felix

机构信息

Department of Fisheries Science, Faculty of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari P.O. Box 578, Iran.

Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01069 Dresden, Germany.

出版信息

Life (Basel). 2022 Mar 3;12(3):371. doi: 10.3390/life12030371.

Abstract

Arthrospira platensis (Spirulina) biomass is a valuable source of sustainable proteins, and the basis for new food and feed products. State-of-the-art production of Spirulina biomass in open pond systems only allows limited control of essential process parameters, such as light color, salinity control, or mixotrophic growth, due to the high risk of contaminations. Closed photobioreactors offer a highly controllable system to optimize all process parameters affecting Spirulina biomass production (quantity) and biomass composition (quality). However, a comprehensive analysis of the impact of light color, salinity effects, and mixotrophic growth modes of Spirulina biomass production has not been performed yet. In this study, Response Surface Methodology (RSM) was employed to develop statistical models, and define optimal mixotrophic process conditions yielding maximum quantitative biomass productivity and high-quality biomass composition related to cellular protein and phycocyanin content. The individual and interaction effects of 0, 5, 15, and 30 g/L of sodium chloride (S), and 0, 1.5, 2, and 2.5 g/L of glucose (G) in three costume-made LED panels (L) where the dominant color was white (W), red (R), and yellow (Y) were investigated in a full factorial design. Spirulina was cultivated in 200 mL cell culture flasks in different treatments, and data were collected at the end of the log growth phase. The lack-of-fit test showed that the cubic model was the most suitable to predict the biomass concentration and protein content, and the two-factor interaction (2FI) was preferred to predict the cellular phycocyanin content (p > 0.05). The reduced models were produced by excluding insignificant terms (p > 0.05). The experimental validation of the RSM optimization showed that the highest biomass concentration (1.09, 1.08, and 0.85 g/L), with improved phycocyanin content of 82.27, 59.47, 107 mg/g, and protein content of 46.18, 39.76, 53.16%, was obtained under the process parameter configuration WL4.28S2.5G, RL10.63S1.33G, and YL1.00S0.88G, respectively.

摘要

钝顶螺旋藻(螺旋藻)生物质是可持续蛋白质的宝贵来源,也是新型食品和饲料产品的基础。由于污染风险高,在开放式池塘系统中生产螺旋藻生物质的现有技术仅允许对基本工艺参数进行有限控制,如光颜色、盐度控制或混合营养生长。封闭式光生物反应器提供了一个高度可控的系统,以优化影响螺旋藻生物质产量(数量)和生物质组成(质量)的所有工艺参数。然而,尚未对光颜色、盐度影响和螺旋藻生物质生产的混合营养生长模式的影响进行全面分析。在本研究中,采用响应面法(RSM)建立统计模型,并确定产生最大定量生物质生产力以及与细胞蛋白和藻蓝蛋白含量相关的高质量生物质组成的最佳混合营养工艺条件。在三种定制的主导颜色分别为白色(W)、红色(R)和黄色(Y)的LED面板(L)中,研究了0、5、15和30 g/L氯化钠(S)以及0、1.5、2和2.5 g/L葡萄糖(G)的个体和交互作用,采用全因子设计。在不同处理下,将螺旋藻培养在200 mL细胞培养瓶中,并在对数生长期结束时收集数据。失拟检验表明,三次模型最适合预测生物质浓度和蛋白质含量,而二因子交互作用(2FI)更适合预测细胞藻蓝蛋白含量(p>0.05)。通过排除不显著项(p>0.05)生成简化模型。RSM优化的实验验证表明,在工艺参数配置WL4.28S2.5G、RL10.63S1.33G和YL1.00S0.88G下,分别获得了最高生物质浓度(1.09、1.08和0.85 g/L),藻蓝蛋白含量分别提高到82.27、59.47、107 mg/g,蛋白质含量分别为46.18、39.76、53.16%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验