Fernández Susana, Torres Ignacio, Gandía José Javier
Departamento de Energía, CIEMAT, Avenida Complutense 40, 28040 Madrid, Spain.
Nanomaterials (Basel). 2022 Jul 16;12(14):2441. doi: 10.3390/nano12142441.
This work presents the implementation of ultrathin TiO films, deposited at room temperature by radio-frequency magnetron sputtering, as electron-selective contacts in silicon heterojunction solar cells. The effect of the working pressure on the properties of the TiO layers and its subsequent impact on the main parameters of the device are studied. The material characterization revealed an amorphous structure regardless of the working pressure; a rougher surface; and a blue shift in bandgap in the TiO layer deposited at the highest-pressure value of 0.89 Pa. When incorporated as part of the passivated full-area electron contact in silicon heterojunction solar cell, the chemical passivation provided by the intrinsic a-Si:H rapidly deteriorates upon the sputtering of the ultra-thin TiO films, although a short anneal is shown to restore much of the passivation lost. The deposition pressure and film thicknesses proved to be critical for the efficiency of the devices. The film thicknesses below 2 nm are necessary to reach open-circuit values above 660 mV, regardless of the deposition pressure. More so, the fill-factor showed a strong dependence on deposition pressure, with the best values obtained for the highest deposition pressure, which we correlated to the porosity of the films. Overall, these results show the potential to fabricate silicon solar cells with a simple implementation of electron-selective TiO contact deposited by magnetron sputtering. These results show the potential to fabricate silicon solar cells with a simple implementation of electron-selective TiO contact.
本文介绍了通过射频磁控溅射在室温下沉积的超薄TiO薄膜作为硅异质结太阳能电池中的电子选择性接触层的应用。研究了工作压力对TiO层性能的影响及其对器件主要参数的后续影响。材料表征表明,无论工作压力如何,TiO层均为非晶结构;表面更粗糙;在0.89 Pa的最高压力值下沉积的TiO层的带隙发生蓝移。当作为硅异质结太阳能电池中钝化全区域电子接触的一部分时,超薄TiO薄膜溅射后,本征a-Si:H提供的化学钝化迅速恶化,不过短时间退火可恢复大部分损失的钝化。沉积压力和薄膜厚度被证明对器件效率至关重要。无论沉积压力如何,薄膜厚度低于2 nm对于达到660 mV以上的开路电压值是必要的。更重要的是,填充因子对沉积压力有很强的依赖性,在最高沉积压力下获得了最佳值,我们将其与薄膜的孔隙率相关联。总体而言,这些结果表明通过磁控溅射简单地实现电子选择性TiO接触来制造硅太阳能电池具有潜力。这些结果表明通过简单地实现电子选择性TiO接触来制造硅太阳能电池具有潜力。