文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment.

作者信息

Rehman Yaser, Qutaish Hamzeh, Kim Jung Ho, Huang Xu-Feng, Alvi Sadia, Konstantinov Konstantin

机构信息

Institute for Superconducting and Electronics Materials (ISEM), University of Wollongong (UOW), Wollongong, NSW 2522, Australia.

Illawarra Health & Medical Research Institute (IHMRI), University of Wollongong (UOW), Wollongong, NSW 2522, Australia.

出版信息

Nanomaterials (Basel). 2022 Jul 18;12(14):2462. doi: 10.3390/nano12142462.


DOI:10.3390/nano12142462
PMID:35889688
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9319169/
Abstract

The development of smart, efficient and multifunctional material systems for diseases treatment are imperative to meet current and future health challenges. Nanomaterials with theranostic properties have offered a cost effective and efficient solution for disease treatment, particularly, metal/oxide based nanotheranostic systems already offering therapeutic and imaging capabilities for cancer treatment. Nanoparticles can selectively generate/scavenge ROS through intrinsic or external stimuli to augment/diminish oxidative stress. An efficient treatment requires higher oxidative stress/toxicity in malignant disease, with a minimal level in surrounding normal cells. The size, shape and surface properties of nanoparticles are critical parameters for achieving a theranostic function in the microenvironment. In the last decade, different strategies for the synthesis of biocompatible theranostic nanostructures have been introduced. The exhibition of therapeutics properties such as selective reactive oxygen species (ROS) scavenging, hyperthermia, antibacterial, antiviral, and imaging capabilities such as MRI, CT and fluorescence activity have been reported in a variety of developed nanosystems to combat cancer, neurodegenerative and emerging infectious diseases. In this review article, theranostic in vitro behaviour in relation to the size, shape and synthesis methods of widely researched and developed nanosystems (Au, Ag, MnO, iron oxide, maghemite quantum flakes, LaO, TaO, cerium nanodots, ITO, MgO) are presented. In particular, ROS-based properties of the nanostructures in the microenvironment for cancer therapy are discussed. The provided overview of the biological behaviour of reported metal-based nanostructures will help to conceptualise novel designs and synthesis strategies for the development of advanced nanotheranostic systems.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/463684061621/nanomaterials-12-02462-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/a150bc58629e/nanomaterials-12-02462-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/5989e9950631/nanomaterials-12-02462-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/c3fadab40284/nanomaterials-12-02462-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/6a844cd34eaf/nanomaterials-12-02462-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/94dd7e9e182c/nanomaterials-12-02462-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/494ad2d56d42/nanomaterials-12-02462-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/9c2239c7f879/nanomaterials-12-02462-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/b5721cccc913/nanomaterials-12-02462-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/b0027ec52898/nanomaterials-12-02462-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/4726d19f7100/nanomaterials-12-02462-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/ab6f62cae988/nanomaterials-12-02462-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/7552fa75221f/nanomaterials-12-02462-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/a12a98333f33/nanomaterials-12-02462-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/b7638b6beaa6/nanomaterials-12-02462-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/04ad3d3faa00/nanomaterials-12-02462-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/74bf16a051e5/nanomaterials-12-02462-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/6f34eaaca1c0/nanomaterials-12-02462-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/1cda87443bf0/nanomaterials-12-02462-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/01123ef24ea7/nanomaterials-12-02462-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/ddbb9e899dce/nanomaterials-12-02462-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/463684061621/nanomaterials-12-02462-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/a150bc58629e/nanomaterials-12-02462-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/5989e9950631/nanomaterials-12-02462-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/c3fadab40284/nanomaterials-12-02462-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/6a844cd34eaf/nanomaterials-12-02462-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/94dd7e9e182c/nanomaterials-12-02462-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/494ad2d56d42/nanomaterials-12-02462-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/9c2239c7f879/nanomaterials-12-02462-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/b5721cccc913/nanomaterials-12-02462-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/b0027ec52898/nanomaterials-12-02462-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/4726d19f7100/nanomaterials-12-02462-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/ab6f62cae988/nanomaterials-12-02462-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/7552fa75221f/nanomaterials-12-02462-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/a12a98333f33/nanomaterials-12-02462-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/b7638b6beaa6/nanomaterials-12-02462-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/04ad3d3faa00/nanomaterials-12-02462-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/74bf16a051e5/nanomaterials-12-02462-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/6f34eaaca1c0/nanomaterials-12-02462-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/1cda87443bf0/nanomaterials-12-02462-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/01123ef24ea7/nanomaterials-12-02462-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/ddbb9e899dce/nanomaterials-12-02462-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5017/9319169/463684061621/nanomaterials-12-02462-g021.jpg

相似文献

[1]
Microenvironmental Behaviour of Nanotheranostic Systems for Controlled Oxidative Stress and Cancer Treatment.

Nanomaterials (Basel). 2022-7-18

[2]
Oxi-Redox Selective Breast Cancer Treatment: An In Vitro Study of Theranostic In-Based Oxide Nanoparticles for Controlled Generation or Prevention of Oxidative Stress.

ACS Appl Mater Interfaces. 2021-1-20

[3]
Black SnO based nanotheranostic for imaging-guided photodynamic/photothermal synergistic therapy in the second near-infrared window.

Acta Biomater. 2021-7-15

[4]
Theranostic lyotropic liquid crystalline nanostructures for selective breast cancer imaging and therapy.

Acta Biomater. 2020-9-1

[5]
Novel iron oxide-cerium oxide core-shell nanoparticles as a potential theranostic material for ROS related inflammatory diseases.

J Mater Chem B. 2018-8-14

[6]
Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy.

J Mater Chem B. 2021-7-28

[7]
Recent advances of polymeric nanoplatforms for cancer treatment: smart delivery systems (SDS), nanotheranostics and multidrug resistance (MDR) inhibition.

Biomed Mater. 2023-11-27

[8]
Design of light/ROS cascade-responsive tumor-recognizing nanotheranostics for spatiotemporally controlled drug release in locoregional photo-chemotherapy.

Acta Biomater. 2020-7-15

[9]
pH-Responsive, Self-Sacrificial Nanotheranostic Agent for Potential In Vivo and In Vitro Dual Modal MRI/CT Imaging, Real-Time, and In Situ Monitoring of Cancer Therapy.

Bioconjug Chem. 2017-2-15

[10]
Heteroatom doped carbon dots with nanoenzyme like properties as theranostic platforms for free radical scavenging, imaging, and chemotherapy.

Acta Biomater. 2020-9-15

引用本文的文献

[1]
GdVO:Eu and LaVO:Eu Nanoparticles Exacerbate Oxidative Stress in L929 Cells: Potential Implications for Cancer Therapy.

Int J Mol Sci. 2024-10-30

[2]
Recent advances in reactive oxygen species scavenging nanomaterials for wound healing.

Exploration (Beijing). 2024-1-17

[3]
New insights into targeted therapy of glioblastoma using smart nanoparticles.

Cancer Cell Int. 2024-5-7

[4]
The Emerging Role of Autophagy as a Target of Environmental Pollutants: An Update on Mechanisms.

Toxics. 2023-1-30

本文引用的文献

[1]
Assisted Synthesis of Coated Iron Oxide Nanoparticles for Magnetic Hyperthermia.

Nanomaterials (Basel). 2022-5-30

[2]
Renal-clearable and biodegradable black phosphorus quantum dots for photoacoustic imaging of kidney dysfunction.

Anal Chim Acta. 2022-4-29

[3]
Toxic Effects and Mechanisms of Silver and Zinc Oxide Nanoparticles on Zebrafish Embryos in Aquatic Ecosystems.

Nanomaterials (Basel). 2022-2-21

[4]
Influence of Parameters on the Death Pathway of Gastric Cells Induced by Gold Nanosphere Mediated Phototherapy.

Nanomaterials (Basel). 2022-2-15

[5]
Effect of Artemisinin-Loaded Mesoporous Cerium-Doped Calcium Silicate Nanopowder on Cell Proliferation of Human Periodontal Ligament Fibroblasts.

Nanomaterials (Basel). 2021-8-26

[6]
A biocompatible theranostic agent based on stable bismuth nanoparticles for X-ray computed tomography/magnetic resonance imaging-guided enhanced chemo/photothermal/chemodynamic therapy for tumours.

J Colloid Interface Sci. 2021-12-15

[7]
Theranostic two-dimensional superparamagnetic maghemite quantum structures for ROS-mediated cancer therapy.

J Mater Chem B. 2021-7-28

[8]
An insight into the mechanism of antibacterial activity by magnesium oxide nanoparticles.

J Mater Chem B. 2021-7-7

[9]
Tantalum oxide nanoparticles as an advanced platform for cancer diagnostics: a review and perspective.

J Mater Chem B. 2021-6-30

[10]
Applications and Biological Activity of Nanoparticles of Manganese and Manganese Oxides in In Vitro and In Vivo Models.

Nanomaterials (Basel). 2021-4-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索