Trama Mattia, Cataudella Vittorio, Perroni Carmine Antonio, Romeo Francesco, Citro Roberta
Physics Department "E.R. Caianiello", Universitá degli Studi di Salerno, I-84084 Fisciano, Italy.
INFN-Sezione di Napoli, Complesso Universitá Monte S. Angelo, I-80126 Napoli, Italy.
Nanomaterials (Basel). 2022 Jul 20;12(14):2494. doi: 10.3390/nano12142494.
Converting charge current into spin current is one of the main mechanisms exploited in spintronics. One prominent example is the Edelstein effect, namely, the generation of a magnetization in response to an external electric field, which can be realized in systems with lack of inversion symmetry. If a system has electrons with an orbital angular momentum character, an orbital magnetization can be generated by the applied electric field, giving rise to the so-called orbital Edelstein effect. Oxide heterostructures are the ideal platform for these effects due to the strong spin-orbit coupling and the lack of inversion symmetries. Beyond a gate-tunable spin Edelstein effect, we predict an orbital Edelstein effect an order of magnitude larger then the spin one at the (111) LaAlO3/SrTiO3 interface for very low and high fillings. We model the material as a bilayer of t2g orbitals using a tight-binding approach, whereas transport properties are obtained in the Boltzmann approach. We give an effective model at low filling, which explains the non-trivial behaviour of the Edelstein response, showing that the hybridization between the electronic bands crucially impacts the Edelstein susceptibility.
将电荷电流转换为自旋电流是自旋电子学中利用的主要机制之一。一个突出的例子是埃德尔斯坦效应,即响应外部电场产生磁化,这可以在缺乏反演对称性的系统中实现。如果一个系统具有具有轨道角动量特征的电子,施加的电场可以产生轨道磁化,从而产生所谓的轨道埃德尔斯坦效应。由于强自旋轨道耦合和缺乏反演对称性,氧化物异质结构是实现这些效应的理想平台。除了栅极可调谐自旋埃德尔斯坦效应外,我们预测在(111)LaAlO3/SrTiO3界面处,对于非常低和高填充情况,轨道埃德尔斯坦效应比自旋埃德尔斯坦效应大一个数量级。我们使用紧束缚方法将材料建模为t2g轨道的双层,而在玻尔兹曼方法中获得传输特性。我们给出了低填充时的有效模型,该模型解释了埃德尔斯坦响应的非平凡行为,表明电子能带之间的杂化对埃德尔斯坦磁化率有至关重要的影响。