Suppr超能文献

具有广谱抗菌活性的喹诺酮类和两性离子喹诺酮酸盐衍生物的合成。

Synthesis of Quinolones and Zwitterionic Quinolonate Derivatives with Broad-Spectrum Antibiotic Activity.

作者信息

Suay-García Beatriz, Bueso-Bordils Jose-Ignacio, Antón-Fos Gerardo, Pérez-Gracia María-Teresa, Falcó Antonio, Alemán-López Pedro

机构信息

ESI International Chair@CEU-UCH, Departamento de Matemáticas, Física y Ciencias Tecnológicas, Universidad Cardenal Herrera-CEU, CEU Universities San Bartolomé 55, 46115 Alfara del Patriarca, Valencia, Spain.

Departamento de Farmacia, Universidad Cardenal Herrera-CEU, CEU Universities C/Ramón y Cajal s/n, 46115 Alfara del Patriarca, Valencia, Spain.

出版信息

Pharmaceuticals (Basel). 2022 Jul 1;15(7):818. doi: 10.3390/ph15070818.

Abstract

Quinolones are one of the most extensively used therapeutic families of antibiotics. However, the increase in antibiotic-resistant bacteria has rendered many of the available compounds useless. After applying our prediction model of activity against to a library of 1000 quinolones, two quinolones were selected to be synthesized. Additionally, a series of zwitterionic quinolonates were also synthesized. Quinolones and zwitterionic quinolonates were obtained by coupling the corresponding amine with reagent in acetonitrile. Antibacterial activity was assessed using a microdilution method. All the compounds presented antibacterial activity, especially quinolones and , selected by the prediction model, which had broad-spectrum activity. Furthermore, a new type of zwitterionic quinolonate with antibacterial activity was found. These compounds can lead to a new line of antimicrobials, as the structures, and, therefore, their properties, are easily adjustable in the amine in position 4 of the pyridine ring.

摘要

喹诺酮类是使用最为广泛的抗生素治疗药物类别之一。然而,抗生素耐药菌的增加已使许多现有化合物变得无用。在将我们针对喹诺酮类的活性预测模型应用于1000种喹诺酮类化合物库后,选择了两种喹诺酮类化合物进行合成。此外,还合成了一系列两性离子喹诺酮酸盐。喹诺酮类和两性离子喹诺酮酸盐是通过在乙腈中将相应的胺与试剂 偶联而得到的。使用微量稀释法评估抗菌活性。所有化合物均表现出抗菌活性,尤其是预测模型选择的喹诺酮类化合物 和 ,它们具有广谱活性。此外,还发现了一种新型的具有抗菌活性的两性离子喹诺酮酸盐。这些化合物可引领新型抗菌药物的研发,因为其结构以及相应的性质在吡啶环4位的胺基部分易于调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1ff/9315932/a3cb54af102c/pharmaceuticals-15-00818-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验