Suppr超能文献

海水环境对玻璃纤维增强塑料复合材料降解影响的分子动力学方法研究

Effects of Seawater Environment on the Degradation of GFRP Composites by Molecular Dynamics Method.

作者信息

Zhang Xiuli, Deng Zongcai

机构信息

Beijing Building Materials Science Academy, Beijing 100041, China.

Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing 100124, China.

出版信息

Polymers (Basel). 2022 Jul 9;14(14):2804. doi: 10.3390/polym14142804.

Abstract

Glass fiber-reinforced polymer (GFRP) composites are promising composites often utilized in coastal infrastructure or used as an alternative to steel reinforcement in seawater sea sand concrete due to their excellent corrosion resistance. Understanding the degradation mechanism of GFRP in corrosion environments is significant for improving the long-term performance of GFRP materials. This paper presented the influences of seawater content and temperature on the properties of GFRP composites using the molecular dynamics method. The simulation results were validated by existing experiments on mechanical properties, interlaminar strength, and microstructures of an accelerated aging test of GFRP. The calculation results indicated that when seawater content of the matrix increased from 0% to 9.09% at 298 K, Young's modulus, shear modulus, and bulk modulus decreased 46.72%, 53.46%, and 41.75%, respectively. The binding energy of GFRP composites with seawater content of 2.15% at 353 K was 26.46% lower than that of unconditioned GFRP at 298 K. It revealed that the higher seawater content and temperature accelerated the degradation of the GFRP composites. The investigation provided a comprehensive understanding of the degradation mechanism of GFRP in seawater environments and provided a basis for the durability design of GFRP composites.

摘要

玻璃纤维增强聚合物(GFRP)复合材料是一种很有前景的复合材料,由于其优异的耐腐蚀性,常用于沿海基础设施或用作海水海砂混凝土中钢筋的替代品。了解GFRP在腐蚀环境中的降解机制对于提高GFRP材料的长期性能具有重要意义。本文采用分子动力学方法研究了海水含量和温度对GFRP复合材料性能的影响。通过对GFRP加速老化试验的力学性能、层间强度和微观结构的现有实验验证了模拟结果。计算结果表明,在298K时,当基体海水含量从0%增加到9.09%时,杨氏模量、剪切模量和体积模量分别下降了46.72%、53.46%和41.75%。353K时海水含量为2.15%的GFRP复合材料的结合能比298K时未处理的GFRP低26.46%。结果表明,较高的海水含量和温度加速了GFRP复合材料的降解。该研究全面了解了GFRP在海水环境中的降解机制,为GFRP复合材料的耐久性设计提供了依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47e4/9320332/912619e53101/polymers-14-02804-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验