Suppr超能文献

使用3D激光传感器和无人机对二维和三维非结构化环境中的检查定位算法进行性能分析

Performance Analysis of Localization Algorithms for Inspections in 2D and 3D Unstructured Environments Using 3D Laser Sensors and UAVs.

作者信息

Espinosa Peralta Paul, Luna Marco Andrés, de la Puente Paloma, Campoy Pascual, Bavle Hriday, Carrio Adrián, Cruz Ulloa Christyan

机构信息

Centro de Automática y Robótica (CAR), Universidad Politécnica de Madrid (CSIC-UPM), 28006 Madrid, Spain.

Automation and Robotics Research Group, Interdisciplinary Centre for Security, Reliability and Trust, University of Luxembourg, 1855 Luxembourg, Luxembourg.

出版信息

Sensors (Basel). 2022 Jul 7;22(14):5122. doi: 10.3390/s22145122.

Abstract

One of the most relevant problems related to Unmanned Aerial Vehicle's (UAV) autonomous navigation for industrial inspection is localization or pose estimation relative to significant elements of the environment. This paper analyzes two different approaches in this regard, focusing on its application to unstructured scenarios where objects of considerable size are present, such as a truck, a wind tower, an airplane, a building, etc. The presented methods require a previously developed Computer-Aided Design (CAD) model of the main object to be inspected. The first approach is based on an occupancy map built from a horizontal projection of this CAD model and the Adaptive Monte Carlo Localization (AMCL) algorithm to reach convergence by considering the likelihood field observation model between the 2D projection of 3D sensor data and the created map. The second approach uses a point cloud prior map of the 3D CAD model and a scan-matching algorithm based on the Iterative Closest Point Algorithm (ICP) and the Unscented Kalman Filter (UKF). The presented approaches have been extensively evaluated using simulated as well as previously recorded real flight data. We focus on aircraft inspection as a test example, but our results and conclusions can be directly extended to other applications. To support this assertion, a truck inspection has been performed. Our tests reflected that creating a 2D or 3D map from a standard CAD model and using a 3D laser scan on the created maps can optimize the processing time, resources and improve robustness. The techniques used to segment unexpected objects in 2D maps improved the performance of AMCL. In addition, we showed that moving around locations with relevant geometry after take-off when running AMCL enabled faster convergence and high accuracy. Hence, it could be used as an initial position estimation method for other localization algorithms. The ICP-NL method works well in environments with elements other than the object to inspect, but it can provide better results if some techniques to segment the new objects are applied. Furthermore, the proposed ICP-NL scan-matching method together with UKF performed faster, in a more robust manner, than NDT. Moreover, it is not affected by flight height. However, ICP-NL error may still be too high for applications requiring increased accuracy.

摘要

与工业检测中无人机自主导航相关的最关键问题之一是相对于环境中重要元素的定位或姿态估计。本文分析了这方面的两种不同方法,重点关注其在存在大型物体的非结构化场景中的应用,如卡车、风塔、飞机、建筑物等。所提出的方法需要预先开发待检测主要物体的计算机辅助设计(CAD)模型。第一种方法基于从该CAD模型的水平投影构建的占用地图以及自适应蒙特卡洛定位(AMCL)算法,通过考虑三维传感器数据的二维投影与创建地图之间的似然场观测模型来实现收敛。第二种方法使用三维CAD模型的点云先验地图以及基于迭代最近点算法(ICP)和无迹卡尔曼滤波器(UKF)的扫描匹配算法。所提出的方法已使用模拟数据以及先前记录的真实飞行数据进行了广泛评估。我们将飞机检测作为测试示例,但我们的结果和结论可直接扩展到其他应用。为支持这一断言,我们进行了卡车检测。我们的测试表明,从标准CAD模型创建二维或三维地图并在创建的地图上使用三维激光扫描可以优化处理时间、资源并提高鲁棒性。用于在二维地图中分割意外物体的技术提高了AMCL的性能。此外,我们表明在运行AMCL时起飞后在具有相关几何形状的位置周围移动能够实现更快的收敛和高精度。因此,它可作为其他定位算法的初始位置估计方法。ICP-NL方法在存在待检测物体以外元素的环境中效果良好,但如果应用一些分割新物体的技术,它可以提供更好的结果。此外,所提出的ICP-NL扫描匹配方法与UKF一起比NDT执行得更快、更稳健。而且,它不受飞行高度的影响。然而,对于要求更高精度的应用,ICP-NL误差可能仍然过高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e157/9316963/9856ef7c2a4d/sensors-22-05122-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验