文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

自主无人机系统上的动态目标跟踪用于监控应用。

Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications.

机构信息

Department of Aeronautical and Aviation Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China.

Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei 10608, Taiwan.

出版信息

Sensors (Basel). 2021 Nov 27;21(23):7888. doi: 10.3390/s21237888.


DOI:10.3390/s21237888
PMID:34883913
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8659946/
Abstract

The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demonstrated a promising platform for utilization in real-world applications. In particular, a UAV equipped with a vision system could be leveraged for surveillance applications. This paper proposes a learning-based UAV system for achieving autonomous surveillance, in which the UAV can be of assistance in autonomously detecting, tracking, and following a target object without human intervention. Specifically, we adopted the YOLOv4-Tiny algorithm for semantic object detection and then consolidated it with a 3D object pose estimation method and Kalman filter to enhance the perception performance. In addition, UAV path planning for a surveillance maneuver is integrated to complete the fully autonomous system. The perception module is assessed on a quadrotor UAV, while the whole system is validated through flight experiments. The experiment results verified the robustness, effectiveness, and reliability of the autonomous object tracking UAV system in performing surveillance tasks. The source code is released to the research community for future reference.

摘要

自主无人机 (UAV) 的不断发展展示了一个在实际应用中极具利用价值的平台。特别是,配备视觉系统的无人机可用于监控应用。本文提出了一种基于学习的无人机系统,用于实现自主监控,其中无人机可以在没有人为干预的情况下协助自主检测、跟踪和跟随目标对象。具体来说,我们采用了 YOLOv4-Tiny 算法进行语义对象检测,然后结合 3D 对象姿态估计方法和卡尔曼滤波器来增强感知性能。此外,还集成了无人机路径规划来完成监视机动任务。感知模块在四旋翼无人机上进行评估,而整个系统则通过飞行实验进行验证。实验结果验证了自主目标跟踪无人机系统在执行监控任务时的鲁棒性、有效性和可靠性。源代码已发布到研究社区,供将来参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/8b4e95fed812/sensors-21-07888-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/0a97ce0a7e76/sensors-21-07888-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/b40c65546da0/sensors-21-07888-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/da2151715905/sensors-21-07888-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/952964ac4bf1/sensors-21-07888-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/7e22f07e3b06/sensors-21-07888-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/aec466b9fc29/sensors-21-07888-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/d7d91454f210/sensors-21-07888-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/e3c0a3a7fd33/sensors-21-07888-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/47756af28a08/sensors-21-07888-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/dd64b767d92b/sensors-21-07888-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/8c3014e987d2/sensors-21-07888-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/8b4e95fed812/sensors-21-07888-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/0a97ce0a7e76/sensors-21-07888-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/b40c65546da0/sensors-21-07888-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/da2151715905/sensors-21-07888-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/952964ac4bf1/sensors-21-07888-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/7e22f07e3b06/sensors-21-07888-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/aec466b9fc29/sensors-21-07888-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/d7d91454f210/sensors-21-07888-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/e3c0a3a7fd33/sensors-21-07888-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/47756af28a08/sensors-21-07888-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/dd64b767d92b/sensors-21-07888-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/8c3014e987d2/sensors-21-07888-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6d/8659946/8b4e95fed812/sensors-21-07888-g012.jpg

相似文献

[1]
Dynamic Object Tracking on Autonomous UAV System for Surveillance Applications.

Sensors (Basel). 2021-11-27

[2]
Learning-Based Autonomous UAV System for Electrical and Mechanical (E&M) Device Inspection.

Sensors (Basel). 2021-2-16

[3]
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

Sensors (Basel). 2022-1-8

[4]
The Control Method of Autonomous Flight Avoidance Barriers of UAVs in Confined Environments.

Sensors (Basel). 2023-6-25

[5]
Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters.

Sensors (Basel). 2023-4-13

[6]
Autonomous UAV System for Cleaning Insulators in Power Line Inspection and Maintenance.

Sensors (Basel). 2021-12-20

[7]
Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.

Sensors (Basel). 2023-1-11

[8]
Proactive Guidance for Accurate UAV Landing on a Dynamic Platform: A Visual-Inertial Approach.

Sensors (Basel). 2022-1-5

[9]
UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.

Sensors (Basel). 2020-10-1

[10]
Autonomous Vision-Based Aerial Grasping for Rotorcraft Unmanned Aerial Vehicles.

Sensors (Basel). 2019-8-3

引用本文的文献

[1]
Composite Filament Materials for 3D-Printed Drone Parts: Advancements in Mechanical Strength, Weight Optimization and Embedded Electronics.

Materials (Basel). 2025-5-24

[2]
Procapra Przewalskii Tracking Autonomous Unmanned Aerial Vehicle Based on Improved Long and Short-Term Memory Kalman Filters.

Sensors (Basel). 2023-4-13

[3]
Learning Response-Consistent and Background-Suppressed Correlation Filters for Real-Time UAV Tracking.

Sensors (Basel). 2023-3-9

[4]
Handover Management for Drones in Future Mobile Networks-A Survey.

Sensors (Basel). 2022-8-25

[5]
Indoor Visual-Based Localization System for Multi-Rotor UAVs.

Sensors (Basel). 2022-8-3

[6]
Design of Gas Monitoring Terminal Based on Quadrotor UAV.

Sensors (Basel). 2022-7-18

[7]
A Path Planning Method with Perception Optimization Based on Sky Scanning for UAVs.

Sensors (Basel). 2022-1-24

[8]
Proactive Guidance for Accurate UAV Landing on a Dynamic Platform: A Visual-Inertial Approach.

Sensors (Basel). 2022-1-5

本文引用的文献

[1]
Learning-Based Autonomous UAV System for Electrical and Mechanical (E&M) Device Inspection.

Sensors (Basel). 2021-2-16

[2]
Airborne Visual Detection and Tracking of Cooperative UAVs Exploiting Deep Learning.

Sensors (Basel). 2019-10-7

[3]
Unsupervised Human Detection with an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations.

Sensors (Basel). 2019-8-14

[4]
An Appearance-Based Tracking Algorithm for Aerial Search and Rescue Purposes.

Sensors (Basel). 2019-2-5

[5]
Dynamic Computation Offloading Scheme for Drone-Based Surveillance Systems.

Sensors (Basel). 2018-9-6

[6]
Visual Tracking: An Experimental Survey.

IEEE Trans Pattern Anal Mach Intell. 2014-7

[7]
Vision and Control for UAVs: A Survey of General Methods and of Inexpensive Platforms for Infrastructure Inspection.

Sensors (Basel). 2015-6-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索