Suppr超能文献

基于神经网络的 IRSs-UEs 关联和 IRSs 最优放置在多 IRSs 辅助无线系统中。

Neural Network Based IRSs-UEs Association and IRSs Optimal Placement in Multi IRSs Aided Wireless System.

机构信息

Department of Telecommunications, University Politehnica of Bucharest, 060042 Bucharest, Romania.

Department of Electrical Engineering, Aswan University, Aswan 81528, Egypt.

出版信息

Sensors (Basel). 2022 Jul 12;22(14):5216. doi: 10.3390/s22145216.

Abstract

Implementing intelligent reflecting surfaces (IRSs), in high frequency based beyond 5G networks, has become a necessity to overcome the harsh blockage issues that exist in these bands. IRSs can supply user equipment (UEs) with multi alternative virtual line of sight (LOS) links, hence enhancing the spectral efficiency (SE) of the system. As a result of deploying multi IRSs as communication assistants, the step of IRSs-UEs association is required to optimally assign each UE to its best IRS; consideration of the interference between different links is needed, to maximize the system performance. However, this process will be a time and power consuming problem, if conventional schemes, which exhaustively search all possible association patterns to find the optimum one for communication, is adapted. Although iterative search based schemes can reduce this complexity, they still need feedback signaling in real time. Hence, they will be inefficient in terms of power consumption and delay. Moreover, optimal placement of the multi-IRSs in the network, to enlarge the system performance, is still an open issue and needs to be studied. Consequently, in this paper, to handle the IRSs-UEs association problem, we propose a neural network (NN) based scheme using a multi-IRSs aided multi input multi output (MIMO) system. In this system, the estimated angles of arrival (AoAs) of UEs are used as input features for the NN, which is trained to associate each UE to its best IRS based on this information; then, within each IRS, passive beamforming is performed. Adapting this NN in online mode guarantees obtaining better performance while relaxing the complexity of association and increasing response time, giving a performance comparable to the exhaustive and iterative search based schemes. The proposed NN based scheme determines the association pattern without searching or feedback signals. Moreover, the proposed approach maintains the system SE nearly similar to the optimum performance obtained by the conventional scheme. Secondly, a criterion is suggested for optimal deployment of multi IRSs in the network, depending on maximizing the average summation UEs signal-to-interference-plus-noise ratio (SINR). Numerical results prove that this strategy outperforms a reference one, which aims to guarantee certain performance by maximizing minimum UE SINR. In contrast the proposed strategy achieves better system and per UE spectral efficiency.

摘要

在高于 5G 的高频基于的网络中,实施智能反射面(IRS)已成为克服这些频段中存在的恶劣阻挡问题的必要条件。IRS 可以为用户设备(UE)提供多个替代虚拟视线路径(LoS)链路,从而提高系统的频谱效率(SE)。由于部署多个 IRS 作为通信助手,需要 IRS-UE 关联步骤来最优地将每个 UE 分配给其最佳 IRS;需要考虑不同链路之间的干扰,以最大化系统性能。然而,如果采用传统方案,即通过穷举搜索所有可能的关联模式来找到最佳通信方案,那么这个过程将是一个耗时耗功率的问题。虽然基于迭代搜索的方案可以降低这种复杂性,但它们仍然需要实时反馈信号。因此,从功率消耗和延迟的角度来看,它们的效率较低。此外,多 IRS 在网络中的最优放置,以扩大系统性能,仍然是一个开放的问题,需要进一步研究。因此,在本文中,为了解决 IRS-UE 关联问题,我们提出了一种基于神经网络(NN)的方案,该方案使用多 IRS 辅助的多输入多输出(MIMO)系统。在该系统中,UE 的估计到达角(AoA)被用作 NN 的输入特征,NN 经过训练,可以根据这些信息将每个 UE 关联到其最佳 IRS;然后,在每个 IRS 内,执行无源波束赋形。在线模式下采用这种 NN 可以保证在放宽关联复杂性和提高响应时间的同时,获得更好的性能,提供与穷举和迭代搜索方案相当的性能。所提出的 NN 方案无需搜索或反馈信号即可确定关联模式。此外,所提出的方法保持系统 SE 几乎与传统方案获得的最佳性能相似。其次,根据最大化平均和 UE 信号干扰加噪声比(SINR),提出了一种多 IRS 网络中最优部署的准则。数值结果证明,该策略优于旨在通过最大化最小 UE SINR 来保证一定性能的参考策略。相比之下,所提出的策略实现了更好的系统和每个 UE 的频谱效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c341/9323589/326392711130/sensors-22-05216-g002.jpg

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验