Hydher Hassaan, Jayakody Dushantha Nalin K, Hemachandra Kasun T, Samarasinghe Tharaka
Centre for Telecommunication Research, School of Engineering, Sri Lanka Technological Campus, Ingiriya Road, Padukka 10500, Colombo, Sri Lanka.
Department of Electronic and Telecommunication Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka.
Sensors (Basel). 2020 Oct 28;20(21):6140. doi: 10.3390/s20216140.
Deployment of unmanned aerial vehicles (UAVs) as aerial base stations (ABSs) has been considered to be a feasible solution to provide network coverage in scenarios where the conventional terrestrial network is overloaded or inaccessible due to an emergency situation. This article studies the problem of optimal placement of the UAVs as ABSs to enable network connectivity for the users in such a scenario. The main contributions of this work include a less complex approach to optimally position the UAVs and to assign user equipment (UE) to each ABS, such that the total spectral efficiency (TSE) of the network is maximized, while maintaining a minimum QoS requirement for the UEs. The main advantage of the proposed approach is that it only requires the knowledge of UE and ABS locations and statistical channel state information. The optimal 2-dimensional (2D) positions of the ABSs and the UE assignments are found using K-means clustering and a stable marriage approach, considering the characteristics of the air-to-ground propagation channels, the impact of co-channel interference from other ABSs, and the energy constraints of the ABSs. Two approaches are proposed to find the optimal altitudes of the ABSs, using search space constrained exhaustive search and particle swarm optimization (PSO). The numerical results show that the PSO-based approach results in higher TSE compared to the exhaustive search-based approach in dense networks, consuming similar amount of energy for ABS movements. Both approaches lead up to approximately 8-fold energy savings compared to ABS placement using naive exhaustive search.
将无人机(UAV)部署为空中基站(ABS)被认为是一种可行的解决方案,可在传统地面网络因紧急情况而过载或无法使用的场景中提供网络覆盖。本文研究了将无人机作为空中基站进行最优布局的问题,以便在此类场景中为用户实现网络连接。这项工作的主要贡献包括一种不太复杂的方法,用于最优地定位无人机并将用户设备(UE)分配给每个空中基站,从而在保持对用户设备的最低服务质量(QoS)要求的同时,最大化网络的总频谱效率(TSE)。所提方法的主要优点是它只需要知道用户设备和空中基站的位置以及统计信道状态信息。考虑到空对地传播信道的特性、来自其他空中基站的同信道干扰的影响以及空中基站的能量约束,使用K均值聚类和稳定匹配方法来找到空中基站的最优二维(2D)位置和用户设备分配。提出了两种方法来找到空中基站的最优高度,即使用搜索空间受限的穷举搜索和粒子群优化(PSO)。数值结果表明,在密集网络中,与基于穷举搜索的方法相比,基于粒子群优化的方法能带来更高的总频谱效率,且空中基站移动消耗的能量相近。与使用朴素穷举搜索进行空中基站布局相比,这两种方法都能节省约8倍的能量。