Suppr超能文献

基于深度学习的非侵入式商业负载监测。

Deep Learning-Based Non-Intrusive Commercial Load Monitoring.

机构信息

School of Electrical and Information Engineering, Anhui University of Science and Technology, Huainan 232001, China.

出版信息

Sensors (Basel). 2022 Jul 13;22(14):5250. doi: 10.3390/s22145250.

Abstract

Commercial load is an essential demand-side resource. Monitoring commercial loads helps not only commercial customers understand their energy usage to improve energy efficiency but also helps electric utilities develop demand-side management strategies to ensure stable operation of the power system. However, existing non-intrusive methods cannot monitor multiple commercial loads simultaneously and do not consider the high correlation and severe imbalance among commercial loads. Therefore, this paper proposes a deep learning-based non-intrusive commercial load monitoring method to solve these problems. The method takes the total power signal of the commercial building as input and directly determines the state and power consumption of several specific appliances. The key elements of the method are a new neural network structure called TTRNet and a new loss function called MLFL. TTRNet is a multi-label classification model that can autonomously learn correlation information through its unique network structure. MLFL is a loss function specifically designed for multi-label classification tasks, which solves the imbalance problem and improves the monitoring accuracy for challenging loads. To validate the proposed method, experiments are performed separately in seen and unseen scenarios using a public dataset. In the seen scenario, the method achieves an average F1 score of 0.957, which is 7.77% better than existing multi-label classification methods. In the unseen scenario, the average F1 score is 0.904, which is 1.92% better than existing methods. The experimental results show that the method proposed in this paper is both effective and practical.

摘要

商业负载是一种重要的需求侧资源。监测商业负载不仅有助于商业客户了解其能源使用情况,以提高能源效率,还有助于电力公司制定需求侧管理策略,以确保电力系统的稳定运行。然而,现有的非侵入式方法无法同时监测多个商业负载,并且不考虑商业负载之间的高度相关性和严重失衡。因此,本文提出了一种基于深度学习的非侵入式商业负载监测方法来解决这些问题。该方法以商业建筑的总功率信号为输入,直接确定几个特定电器的状态和功耗。该方法的关键要素是一种名为 TTRNet 的新型神经网络结构和一种名为 MLFL 的新型损失函数。TTRNet 是一种多标签分类模型,它可以通过其独特的网络结构自动学习相关信息。MLFL 是一种专门为多标签分类任务设计的损失函数,它解决了不平衡问题,并提高了对挑战性负载的监测准确性。为了验证所提出的方法,使用公共数据集分别在可见和不可见场景中进行了实验。在可见场景中,该方法的平均 F1 得分为 0.957,比现有的多标签分类方法提高了 7.77%。在不可见场景中,平均 F1 得分为 0.904,比现有的方法提高了 1.92%。实验结果表明,本文提出的方法是有效且实用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b18/9320136/88ed8f39b5eb/sensors-22-05250-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验