Suppr超能文献

基于非侵入式负荷监测的隐私保护家庭负荷预测:一种联邦深度学习方法。

Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach.

作者信息

Zhou Xinxin, Feng Jingru, Wang Jian, Pan Jianhong

机构信息

School of Computer Science, Northeast Electric Power University, jilin, China.

State Grid Jilin Electric Power Company Limited, Changchun, China.

出版信息

PeerJ Comput Sci. 2022 Aug 2;8:e1049. doi: 10.7717/peerj-cs.1049. eCollection 2022.

Abstract

Load forecasting is very essential in the analysis and grid planning of power systems. For this reason, we first propose a household load forecasting method based on federated deep learning and non-intrusive load monitoring (NILM). As far as we know, this is the first research on federated learning (FL) in household load forecasting based on NILM. In this method, the integrated power is decomposed into individual device power by non-intrusive load monitoring, and the power of individual appliances is predicted separately using a federated deep learning model. Finally, the predicted power values of individual appliances are aggregated to form the total power prediction. Specifically, by separately predicting the electrical equipment to obtain the predicted power, it avoids the error caused by the strong time dependence in the power signal of a single device. In the federated deep learning prediction model, the household owners with the power data share the parameters of the local model instead of the local power data, guaranteeing the privacy of the household user data. The case results demonstrate that the proposed approach provides a better prediction effect than the traditional methodology that directly predicts the aggregated signal as a whole. In addition, experiments in various federated learning environments are designed and implemented to validate the validity of this methodology.

摘要

负荷预测在电力系统的分析和电网规划中非常重要。基于此,我们首先提出一种基于联邦深度学习和非侵入式负荷监测(NILM)的家庭负荷预测方法。据我们所知,这是首次在基于NILM的家庭负荷预测中对联邦学习(FL)进行研究。在该方法中,通过非侵入式负荷监测将总功率分解为单个设备功率,并使用联邦深度学习模型分别预测单个电器的功率。最后,将单个电器的预测功率值进行汇总以形成总功率预测。具体而言,通过分别预测电气设备来获得预测功率,避免了单个设备功率信号中强烈的时间依赖性所导致的误差。在联邦深度学习预测模型中,拥有功率数据的家庭用户共享本地模型的参数而非本地功率数据,从而保证了家庭用户数据的隐私性。案例结果表明,与直接整体预测汇总信号的传统方法相比,所提出的方法具有更好的预测效果。此外,还设计并实施了各种联邦学习环境下的实验,以验证该方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/fc9846a34e98/peerj-cs-08-1049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验