文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach.

作者信息

Zhou Xinxin, Feng Jingru, Wang Jian, Pan Jianhong

机构信息

School of Computer Science, Northeast Electric Power University, jilin, China.

State Grid Jilin Electric Power Company Limited, Changchun, China.

出版信息

PeerJ Comput Sci. 2022 Aug 2;8:e1049. doi: 10.7717/peerj-cs.1049. eCollection 2022.


DOI:10.7717/peerj-cs.1049
PMID:36092014
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9455055/
Abstract

Load forecasting is very essential in the analysis and grid planning of power systems. For this reason, we first propose a household load forecasting method based on federated deep learning and non-intrusive load monitoring (NILM). As far as we know, this is the first research on federated learning (FL) in household load forecasting based on NILM. In this method, the integrated power is decomposed into individual device power by non-intrusive load monitoring, and the power of individual appliances is predicted separately using a federated deep learning model. Finally, the predicted power values of individual appliances are aggregated to form the total power prediction. Specifically, by separately predicting the electrical equipment to obtain the predicted power, it avoids the error caused by the strong time dependence in the power signal of a single device. In the federated deep learning prediction model, the household owners with the power data share the parameters of the local model instead of the local power data, guaranteeing the privacy of the household user data. The case results demonstrate that the proposed approach provides a better prediction effect than the traditional methodology that directly predicts the aggregated signal as a whole. In addition, experiments in various federated learning environments are designed and implemented to validate the validity of this methodology.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/ad8134728df5/peerj-cs-08-1049-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/fc9846a34e98/peerj-cs-08-1049-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/092dadf1dacf/peerj-cs-08-1049-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/d24a35448566/peerj-cs-08-1049-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/e8d20873cdee/peerj-cs-08-1049-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/35afbbb4efff/peerj-cs-08-1049-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/c98944a06f9a/peerj-cs-08-1049-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/9e9bc2b2aa23/peerj-cs-08-1049-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/f3b6b2bf801c/peerj-cs-08-1049-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/5271c555f56b/peerj-cs-08-1049-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/7697a550d65c/peerj-cs-08-1049-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/d64aad356402/peerj-cs-08-1049-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/caf8d0e7067e/peerj-cs-08-1049-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/21b4755e8d5b/peerj-cs-08-1049-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/e660e4f8d9d0/peerj-cs-08-1049-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/a99517637cd4/peerj-cs-08-1049-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/f47709983a27/peerj-cs-08-1049-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/e541c85f4c15/peerj-cs-08-1049-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/b43e6999c4bc/peerj-cs-08-1049-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/99e68f37b8f8/peerj-cs-08-1049-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/74e362f725b1/peerj-cs-08-1049-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/1201776f0454/peerj-cs-08-1049-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/ad8134728df5/peerj-cs-08-1049-g022.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/fc9846a34e98/peerj-cs-08-1049-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/092dadf1dacf/peerj-cs-08-1049-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/d24a35448566/peerj-cs-08-1049-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/e8d20873cdee/peerj-cs-08-1049-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/35afbbb4efff/peerj-cs-08-1049-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/c98944a06f9a/peerj-cs-08-1049-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/9e9bc2b2aa23/peerj-cs-08-1049-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/f3b6b2bf801c/peerj-cs-08-1049-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/5271c555f56b/peerj-cs-08-1049-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/7697a550d65c/peerj-cs-08-1049-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/d64aad356402/peerj-cs-08-1049-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/caf8d0e7067e/peerj-cs-08-1049-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/21b4755e8d5b/peerj-cs-08-1049-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/e660e4f8d9d0/peerj-cs-08-1049-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/a99517637cd4/peerj-cs-08-1049-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/f47709983a27/peerj-cs-08-1049-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/e541c85f4c15/peerj-cs-08-1049-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/b43e6999c4bc/peerj-cs-08-1049-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/99e68f37b8f8/peerj-cs-08-1049-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/74e362f725b1/peerj-cs-08-1049-g020.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/1201776f0454/peerj-cs-08-1049-g021.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/16d9/9455055/ad8134728df5/peerj-cs-08-1049-g022.jpg

相似文献

[1]
Privacy-preserving household load forecasting based on non-intrusive load monitoring: A federated deep learning approach.

PeerJ Comput Sci. 2022-8-2

[2]
Deep Federated Adaptation: An Adaptative Residential Load Forecasting Approach with Federated Learning.

Sensors (Basel). 2022-4-24

[3]
DiffNILM: A Novel Framework for Non-Intrusive Load Monitoring Based on the Conditional Diffusion Model.

Sensors (Basel). 2023-3-28

[4]
ELECTRIcity: An Efficient Transformer for Non-Intrusive Load Monitoring.

Sensors (Basel). 2022-4-11

[5]
Extension of physical activity recognition with 3D CNN using encrypted multiple sensory data to federated learning based on multi-key homomorphic encryption.

Comput Methods Programs Biomed. 2024-1

[6]
Semi-supervised learning with flexible threshold for non-intrusive load monitoring.

Heliyon. 2024-7-15

[7]
Federated learning with hyper-network-a case study on whole slide image analysis.

Sci Rep. 2023-1-31

[8]
Homomorphic Encryption-Based Federated Privacy Preservation for Deep Active Learning.

Entropy (Basel). 2022-10-27

[9]
A collaborative privacy-preserving approach for passenger demand forecasting of autonomous taxis empowered by federated learning in smart cities.

Sci Rep. 2024-1-24

[10]
Generalized global solar radiation forecasting model via cyber-secure deep federated learning.

Environ Sci Pollut Res Int. 2024-3

引用本文的文献

[1]
On enabling collaborative non-intrusive load monitoring for sustainable smart cities.

Sci Rep. 2023-4-21

本文引用的文献

[1]
GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding Time-Resolved EEG Motor Imagery Signals.

IEEE Trans Neural Netw Learn Syst. 2024-6

[2]
Describing Video With Attention-Based Bidirectional LSTM.

IEEE Trans Cybern. 2019-7

[3]
The UK-DALE dataset, domestic appliance-level electricity demand and whole-house demand from five UK homes.

Sci Data. 2015-3-31

[4]
Face recognition: a convolutional neural-network approach.

IEEE Trans Neural Netw. 1997

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索