Suppr超能文献

基于协同理论的多注意力机制图卷积 HAR 模型。

Multiple Attention Mechanism Graph Convolution HAR Model Based on Coordination Theory.

机构信息

School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China.

Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China.

出版信息

Sensors (Basel). 2022 Jul 14;22(14):5259. doi: 10.3390/s22145259.

Abstract

Human action recognition (HAR) is the foundation of human behavior comprehension. It is of great significance and can be used in many real-world applications. From the point of view of human kinematics, the coordination of limbs is an important intrinsic factor of motion and contains a great deal of information. In addition, for different movements, the HAR algorithm provides important, multifaceted attention to each joint. Based on the above analysis, this paper proposes a HAR algorithm, which adopts two attention modules that work together to extract the coordination characteristics in the process of motion, and strengthens the attention of the model to the more important joints in the process of moving. Experimental data shows these two modules can improve the recognition accuracy of the model on the public HAR dataset (NTU-RGB + D, Kinetics-Skeleton).

摘要

人体动作识别(HAR)是理解人类行为的基础。它具有重要意义,可以应用于许多实际场景中。从人体运动学的角度来看,四肢的协调是运动的一个重要内在因素,包含了大量的信息。此外,对于不同的动作,HAR 算法为每个关节提供了重要的、多方面的关注。基于以上分析,本文提出了一种 HAR 算法,该算法采用两个协同工作的注意力模块,从运动过程中提取协调特征,并加强模型对运动过程中更重要关节的注意力。实验数据表明,这两个模块可以提高模型在公共 HAR 数据集(NTU-RGB + D、Kinetics-Skeleton)上的识别精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/871c/9318940/2a37e0542112/sensors-22-05259-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验