School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China.
Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China.
Sensors (Basel). 2022 Jul 14;22(14):5259. doi: 10.3390/s22145259.
Human action recognition (HAR) is the foundation of human behavior comprehension. It is of great significance and can be used in many real-world applications. From the point of view of human kinematics, the coordination of limbs is an important intrinsic factor of motion and contains a great deal of information. In addition, for different movements, the HAR algorithm provides important, multifaceted attention to each joint. Based on the above analysis, this paper proposes a HAR algorithm, which adopts two attention modules that work together to extract the coordination characteristics in the process of motion, and strengthens the attention of the model to the more important joints in the process of moving. Experimental data shows these two modules can improve the recognition accuracy of the model on the public HAR dataset (NTU-RGB + D, Kinetics-Skeleton).
人体动作识别(HAR)是理解人类行为的基础。它具有重要意义,可以应用于许多实际场景中。从人体运动学的角度来看,四肢的协调是运动的一个重要内在因素,包含了大量的信息。此外,对于不同的动作,HAR 算法为每个关节提供了重要的、多方面的关注。基于以上分析,本文提出了一种 HAR 算法,该算法采用两个协同工作的注意力模块,从运动过程中提取协调特征,并加强模型对运动过程中更重要关节的注意力。实验数据表明,这两个模块可以提高模型在公共 HAR 数据集(NTU-RGB + D、Kinetics-Skeleton)上的识别精度。