Suppr超能文献

基于骨架的动作识别的记忆注意网络。

Memory Attention Networks for Skeleton-Based Action Recognition.

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Sep;33(9):4800-4814. doi: 10.1109/TNNLS.2021.3061115. Epub 2022 Aug 31.

Abstract

Skeleton-based action recognition has been extensively studied, but it remains an unsolved problem because of the complex variations of skeleton joints in 3-D spatiotemporal space. To handle this issue, we propose a newly temporal-then-spatial recalibration method named memory attention networks (MANs) and deploy MANs using the temporal attention recalibration module (TARM) and spatiotemporal convolution module (STCM). In the TARM, a novel temporal attention mechanism is built based on residual learning to recalibrate frames of skeleton data temporally. In the STCM, the recalibrated sequence is transformed or encoded as the input of CNNs to further model the spatiotemporal information of skeleton sequence. Based on MANs, a new collaborative memory fusion module (CMFM) is proposed to further improve the efficiency, leading to the collaborative MANs (C-MANs), trained with two streams of base MANs. TARM, STCM, and CMFM form a single network seamlessly and enable the whole network to be trained in an end-to-end fashion. Comparing with the state-of-the-art methods, MANs and C-MANs improve the performance significantly and achieve the best results on six data sets for action recognition. The source code has been made publicly available at https://github.com/memory-attention-networks.

摘要

基于骨架的动作识别已经得到了广泛的研究,但由于 3D 时空空间中骨架关节的复杂变化,它仍然是一个未解决的问题。为了解决这个问题,我们提出了一种新的时间优先于空间的重新校准方法,称为记忆注意网络(MANs),并使用时间注意重新校准模块(TARM)和时空卷积模块(STCM)来部署 MANs。在 TARM 中,基于残差学习构建了一种新的时间注意机制,以重新校准骨架数据的时间帧。在 STCM 中,将重新校准的序列转换或编码为 CNN 的输入,以进一步对骨架序列的时空信息进行建模。基于 MANs,我们提出了一种新的协同记忆融合模块(CMFM),以进一步提高效率,从而形成协同 MANs(C-MANs),并使用两个基础 MANs 流进行训练。TARM、STCM 和 CMFM 无缝地形成了一个单一的网络,使整个网络能够以端到端的方式进行训练。与最先进的方法相比,MANs 和 C-MANs 显著提高了性能,并在六个动作识别数据集上取得了最佳结果。源代码已在 https://github.com/memory-attention-networks 上公开。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验