Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
Sensors (Basel). 2022 Jul 18;22(14):5351. doi: 10.3390/s22145351.
In this study, we propose using a thermal imaging camera (TIC) with a deep learning model as an intelligent human detection approach during emergency evacuations in a low-visibility smoky fire scenarios. We use low-wavelength infrared (LWIR) images taken by a TIC qualified with the National Fire Protection Association (NFPA) 1801 standards as input to the YOLOv4 model for real-time object detection. The model trained with a single Nvidia GeForce 2070 can achieve >95% precision for the location of people in a low-visibility smoky scenario with 30.1 frames per second (FPS). This real-time result can be reported to control centers as useful information to help provide timely rescue and provide protection to firefighters before entering dangerous smoky fire situations.
在这项研究中,我们提出在低可见度烟雾火灾场景中的紧急疏散中使用带有深度学习模型的热成像摄像机(TIC)作为智能人体检测方法。我们将 TIC 拍摄的低波长红外(LWIR)图像用作输入,该 TIC 符合美国国家消防协会(NFPA)1801 标准,输入到 YOLOv4 模型中进行实时物体检测。使用单个 Nvidia GeForce 2070 训练的模型可以在每秒 30.1 帧的速度下,实现低可见度烟雾场景中人的位置的 >95%的精度。这个实时结果可以报告给控制中心,作为有用的信息,帮助在进入危险的烟雾火灾情况之前,及时对消防员进行救援和保护。