Wang Bo, Zhao Xuewei, Dong Tianyu, Li Ben, Zhang Fan, Su Jiale, Ren Yuhui, Duan Xiangliang, Lin Hongxiao, Miao Yuanhao, Radamson Henry H
Research and Development Center of Optoelectronic Hybrid IC, Guangdong Greater Bay Area Institute of Integrated Circuit and System, Guangzhou 510535, China.
Nanomaterials (Basel). 2025 Aug 27;15(17):1316. doi: 10.3390/nano15171316.
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VO) remains predominant, with Al-doped films via atomic layer deposition (ALD) achieving a temperature coefficient of resistance (TCR) of -4.2%/K and significant noise reduction when combined with single-walled carbon nanotubes (SWCNTs). Silicon-based materials, such as phosphorus-doped hydrogenated amorphous silicon (α-Si:H), exhibit a TCR exceeding -5%/K, while titanium oxide (TiO) attains TCR values up to -7.2%/K through ALD and annealing. Emerging materials including GeSn alloys and semiconducting SWCNT networks show promise, with SWCNTs achieving a TCR of -6.5%/K and noise equivalent power (NEP) as low as 1.2 mW/√Hz. Advances in FPA technology feature pixel pitches reduced to 6 μm enabled by vertical nanotube thermal isolation, alongside the 3D heterogeneous integration of single-crystalline Si-based materials with readout circuits, yielding improved fill factors and responsivity. State-of-the-art VO-based FPAs demonstrate noise equivalent temperature differences (NETD) below 30 mK and specific detectivity (D*) near 2 × 10 cm⋅Hz /W. Future advancements will leverage materials-driven innovation (e.g., GeSn/SWCNT composites) and process optimization (e.g., plasma-enhanced ALD) to enable ultra-high-resolution imaging in both civil and military applications. This review underscores the central role of material innovation and system optimization in propelling microbolometer technology toward ultra-high resolution, high sensitivity, high reliability, and broad applicability.
非制冷微测辐射热计因其结构紧凑、功耗低和性价比高,在红外探测中发挥着关键作用。本综述全面总结了热敏电阻材料和焦平面阵列(FPA)的最新进展,重点介绍了灵敏度和集成度方面的改进。氧化钒(VO)仍然占主导地位,通过原子层沉积(ALD)制备的铝掺杂薄膜实现了-4.2%/K的电阻温度系数(TCR),与单壁碳纳米管(SWCNT)结合时显著降低了噪声。硅基材料,如磷掺杂氢化非晶硅(α-Si:H),TCR超过-5%/K,而通过ALD和退火处理的氧化钛(TiO)的TCR值高达-7.2%/K。包括锗锡合金和半导体SWCNT网络在内的新兴材料显示出潜力,SWCNT的TCR达到-6.5%/K,噪声等效功率(NEP)低至1.2 mW/√Hz。FPA技术的进展包括通过垂直纳米管热隔离将像素间距缩小到6μm,以及将单晶硅基材料与读出电路进行3D异质集成,从而提高填充因子和响应度。基于VO的最先进FPA的噪声等效温差(NETD)低于30 mK,比探测率(D*)接近2×10 cm⋅Hz /W。未来的进展将利用材料驱动的创新(如锗锡/ SWCNT复合材料)和工艺优化(如等离子体增强ALD),以实现民用和军事应用中的超高分辨率成像。本综述强调了材料创新和系统优化在推动微测辐射热计技术朝着超高分辨率、高灵敏度、高可靠性和广泛适用性发展方面的核心作用。