Suppr超能文献

持久化传感器数据映射以实现中长期自主性。

Persistent Mapping of Sensor Data for Medium-Term Autonomy.

机构信息

Department of Engineering Science, Trinity University, San Antonio, TX 78259, USA.

Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228, USA.

出版信息

Sensors (Basel). 2022 Jul 20;22(14):5427. doi: 10.3390/s22145427.

Abstract

For vehicles to operate in unmapped areas with some degree of autonomy, it would be useful to aggregate and store processed sensor data so that it can be used later. In this paper, a tool that records and optimizes the placement of costmap data on a persistent map is presented. The optimization takes several factors into account, including local vehicle odometry, GPS signals when available, local map consistency, deformation of map regions, and proprioceptive GPS offset error. Results illustrating the creation of maps from previously unseen regions (a 100 m × 880 m test track and a 1.2 km dirt trail) are presented, with and without GPS signals available during the creation of the maps. Finally, two examples of the use of these maps are given. First, a path is planned along roads that have been seen exactly once during the mapping phase. Secondly, the map is used for vehicle localization in the absence of GPS signals.

摘要

为了使车辆能够在具有一定自主性的未映射区域中运行,聚合和存储处理后的传感器数据将非常有用,以便以后可以使用这些数据。在本文中,提出了一种记录和优化代价地图数据在持久地图上的放置的工具。该优化考虑了多个因素,包括本地车辆里程计、GPS 信号(如果可用)、局部地图一致性、地图区域变形和本体 GPS 偏移误差。本文展示了从以前看不见的区域(一个 100m×880m 的测试轨道和一个 1.2km 的土路)创建地图的结果,其中包括在创建地图时是否有 GPS 信号。最后,给出了这两个地图的使用示例。首先,沿着在映射阶段仅精确看到一次的道路规划路径。其次,在没有 GPS 信号的情况下,使用地图进行车辆定位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9cb8/9325316/2800eac77034/sensors-22-05427-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验