Suppr超能文献

基于模糊创新的自适应卡尔曼滤波器,用于增强密集城市环境中的车辆定位。

A Fuzzy-Innovation-Based Adaptive Kalman Filterfor Enhanced Vehicle Positioning in DenseUrban Environments.

机构信息

Center for Embedded Software Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu,Daegu 41566, Korea.

School of Electronics Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu,Daegu 41566, Korea.

出版信息

Sensors (Basel). 2019 Mar 6;19(5):1142. doi: 10.3390/s19051142.

Abstract

In this paper, a fuzzy-innovation based adaptive extended Kalman filter (FI-AKF)is proposed to improve the performance of the GNSS/INS fusion system, which is degradeddue to satellite signal cutoff and attenuation and inaccurate modeling in dense urbanenvironments. The information used for sensor fusion is obtained from real-time kinematic (RTK),micro-electro-mechanical system based inertial measumrement unit (MEMS-IMU), and on-boarddiagnostics (OBD). The fuzzy logic system is proposed to adaptively update the measurementcovariance matrix of the RTK according to the position dilution of precision (PDOP), the numberof receivable satellites, and the innovation of the extended Kalman filter (EKF). In addition, thedriving state of the vehicle is defined as stop, straight run, left/right turn, and the like. To reduce theheading estimation error of the Kalman filter, the estimated heading is corrected according to thedriving state. Also, the measurement covariance matrices of IMU and OBD are applied adaptivelyconsidering the characteristics of each sensor according to the driving state. In order to analyze theperformance of the proposed FI-AKF positioning system in a dense urban environment, a computersimulation is performed. The proposed FI-AKF is compared to the performance of the existingextended Kalman filter and the innovation-based adaptive extended Kalman filter. In addition, weconduct a performance comparison experiment with a commercial positioning system in the field test.Through each experiment, it is confirmed that the proposed FI-AKF system has higher positioningperformance than the comparison positioning systems in a dense urban environment.

摘要

本文提出了一种基于模糊创新的自适应扩展卡尔曼滤波器(FI-AKF),以改善 GNSS/INS 融合系统的性能,该系统在密集城市环境中由于卫星信号中断和衰减以及不准确的建模而降级。用于传感器融合的信息来自实时动态(RTK)、基于微机电系统的惯性测量单元(MEMS-IMU)和车载诊断(OBD)。模糊逻辑系统被提出,根据位置精度稀释(PDOP)、可接收卫星的数量和扩展卡尔曼滤波器(EKF)的创新,自适应地更新 RTK 的测量协方差矩阵。此外,车辆的行驶状态定义为停止、直驶、左右转弯等。为了减少卡尔曼滤波器的航向估计误差,根据行驶状态校正估计的航向。此外,根据行驶状态,根据每个传感器的特点自适应地应用 IMU 和 OBD 的测量协方差矩阵。为了分析在密集城市环境中提出的 FI-AKF 定位系统的性能,进行了计算机仿真。将提出的 FI-AKF 与现有的扩展卡尔曼滤波器和基于创新的自适应扩展卡尔曼滤波器的性能进行了比较。此外,我们在现场测试中进行了与商业定位系统的性能比较实验。通过每个实验,证实了提出的 FI-AKF 系统在密集城市环境中的定位性能优于比较定位系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9daa/6427379/b64235c56f41/sensors-19-01142-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验