Bege Miklós, Borbás Anikó
Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary.
Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
Pharmaceuticals (Basel). 2022 Jul 22;15(8):909. doi: 10.3390/ph15080909.
Nucleic acids play a central role in human biology, making them suitable and attractive tools for therapeutic applications. While conventional drugs generally target proteins and induce transient therapeutic effects, nucleic acid medicines can achieve long-lasting or curative effects by targeting the genetic bases of diseases. However, native oligonucleotides are characterized by low in vivo stability due to nuclease sensitivity and unfavourable physicochemical properties due to their polyanionic nature, which are obstacles to their therapeutic use. A myriad of synthetic oligonucleotides have been prepared in the last few decades and it has been shown that proper chemical modifications to either the nucleobase, the ribofuranose unit or the phosphate backbone can protect the nucleic acids from degradation, enable efficient cellular uptake and target localization ensuring the efficiency of the oligonucleotide-based therapy. In this review, we present a summary of structure and properties of artificial nucleic acids containing nucleobase, sugar or backbone modifications, and provide an overview of the structure and mechanism of action of approved oligonucleotide drugs including gene silencing agents, aptamers and mRNA vaccines.
核酸在人类生物学中起着核心作用,使其成为治疗应用中合适且有吸引力的工具。传统药物通常靶向蛋白质并产生短暂的治疗效果,而核酸药物可以通过靶向疾病的基因基础实现持久或治愈性效果。然而,天然寡核苷酸由于核酸酶敏感性而具有体内稳定性低的特点,并且由于其多阴离子性质而具有不利的物理化学性质,这些都是其治疗应用的障碍。在过去几十年中已经制备了无数的合成寡核苷酸,并且已经表明对核碱基、呋喃核糖单元或磷酸主链进行适当的化学修饰可以保护核酸不被降解,实现有效的细胞摄取和靶向定位,从而确保基于寡核苷酸的治疗的有效性。在这篇综述中,我们总结了含有核碱基、糖或主链修饰的人工核酸的结构和性质,并概述了已批准的寡核苷酸药物的结构和作用机制,包括基因沉默剂、适体和mRNA疫苗。