Suppr超能文献

[建立预测极早产儿坏死性小肠结肠炎的列线图模型]

[Establishment of a nomogram model for predicting necrotizing enterocolitis in very preterm infants].

作者信息

Liu Xin, Liu Li-Jun, Jiang Hai-Yan, Zhao Chang-Liang, He Hai-Ying

机构信息

Department of Neonatology, Third Hospital of Baogang Group, Baotou 014010, China.

出版信息

Zhongguo Dang Dai Er Ke Za Zhi. 2022 Jul 15;24(7):778-785. doi: 10.7499/j.issn.1008-8830.2202093.

Abstract

OBJECTIVES

To investigate the risk factors for necrotizing enterocolitis (NEC) in very preterm infants and establish a nomogram model for predicting the risk of NEC.

METHODS

A total of 752 very preterm infants who were hospitalized from January 2015 to December 2021 were enrolled as subjects, among whom 654 were born in 2015-2020 (development set) and 98 were born in 2021 (validation set). According to the presence or absence of NEC, the development set was divided into two groups: NEC (=77) and non-NEC (=577). A multivariate logistic regression analysis was used to investigate the independent risk factors for NEC in very preterm infants. R software was used to plot the nomogram model. The nomogram model was then validated by the data of the validation set. The receiver operating characteristic (ROC) curve, the Hosmer-Lemeshow goodness-of-fit test, and the calibration curve were used to evaluate the performance of the nomogram model, and the clinical decision curve was used to assess the clinical practicability of the model.

RESULTS

The multivariate logistic regression analysis showed that neonatal asphyxia, sepsis, shock, hypoalbuminemia, severe anemia, and formula feeding were independent risk factors for NEC in very preterm infants (<0.05). The ROC curve of the development set had an area under the curve (AUC) of 0.833 (95%: 0.715-0.952), and the ROC curve of the validation set had an AUC of 0.826 (95%: 0.797-0.862), suggesting that the nomogram model had a good discriminatory ability. The calibration curve analysis and the Hosmer-Lemeshow goodness-of-fit test showed good accuracy and consistency between the predicted value of the model and the actual value.

CONCLUSIONS

Neonatal asphyxia, sepsis, shock, hypoalbuminemia, severe anemia, and formula feeding are independent risk factors for NEC in very preterm infant. The nomogram model based on the multivariate logistic regression analysis provides a quantitative, simple, and intuitive tool for early assessment of the development of NEC in very preterm infants in clinical practice.

摘要

目的

探讨极早产儿坏死性小肠结肠炎(NEC)的危险因素,并建立预测NEC风险的列线图模型。

方法

选取2015年1月至2021年12月住院的752例极早产儿作为研究对象,其中2015 - 2020年出生的654例为训练集,2021年出生的98例为验证集。根据是否发生NEC,将训练集分为两组:NEC组(=77例)和非NEC组(=577例)。采用多因素logistic回归分析探讨极早产儿NEC的独立危险因素。使用R软件绘制列线图模型。然后用验证集数据对列线图模型进行验证。采用受试者工作特征(ROC)曲线、Hosmer-Lemeshow拟合优度检验和校准曲线评估列线图模型的性能,用临床决策曲线评估模型的临床实用性。

结果

多因素logistic回归分析显示,新生儿窒息、败血症、休克、低蛋白血症、重度贫血和配方奶喂养是极早产儿发生NEC的独立危险因素(<0.05)。训练集的ROC曲线下面积(AUC)为0.833(95%:0.715 - 0.952),验证集的ROC曲线AUC为0.826(95%:0.797 - 0.862),表明列线图模型具有良好的鉴别能力。校准曲线分析和Hosmer-Lemeshow拟合优度检验显示模型预测值与实际值之间具有良好的准确性和一致性。

结论

新生儿窒息、败血症、休克、低蛋白血症、重度贫血和配方奶喂养是极早产儿发生NEC的独立危险因素。基于多因素logistic回归分析的列线图模型为临床实践中早期评估极早产儿NEC的发生发展提供了一种定量、简单且直观的工具。

相似文献

本文引用的文献

4
Modifiable Risk Factors in Necrotizing Enterocolitis.坏死性小肠结肠炎的可改变风险因素
Clin Perinatol. 2019 Mar;46(1):129-143. doi: 10.1016/j.clp.2018.10.007. Epub 2018 Dec 21.
5
A critical analysis of risk factors for necrotizing enterocolitis.坏死性小肠结肠炎危险因素的批判性分析。
Semin Fetal Neonatal Med. 2018 Dec;23(6):374-379. doi: 10.1016/j.siny.2018.07.005. Epub 2018 Aug 1.
6

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验