Suppr超能文献

基于生物信息学的与佩罗尼病相关的潜在缺氧相关基因的鉴定。

Bioinformatics-Based Identification of Potential Hypoxia-Related Genes Associated With Peyronie's Disease.

机构信息

Department of Urology, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.

Department of Admission Center, The Affiliated Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.

出版信息

Am J Mens Health. 2022 Jul-Aug;16(4):15579883221111720. doi: 10.1177/15579883221111720.

Abstract

Hypoxia is one of the most important predisposing conditions for Peyronie's disease (PD) and the pathogenetic mechanism is yet to be completely elucidated. This study applied bioinformatic approaches to select candidate hypoxia-related genes involved in the pathogenesis of PD. The Gene Expression Omnibus (GEO) data set GSE146500 was introduced to compare the transcriptional profiling between normal and PD samples. The differential expression of hypoxia-related gene was determined with R software. On the selected candidate genes, further functional analyses were applied, including protein-protein interactions (PPIs), gene correlation, gene ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. A total of 66 candidate genes (24 candidates overexpressed in PD and 42 showing reduced expression in PD) were distinguished according to the differential expression between human fibroblast cells from normal and PD patients. The interactions among these candidate genes were recognized according to PPI analysis. The functional enrichment analyses revealed the potential modulatory functions of the candidate genes in some major biological processes, especially in glycolysis/gluconeogenesis and carbon metabolism. The findings would facilitate further study on the pathogenesis of PD, which might consequently promote the improvement of clinical strategies against PD.

摘要

缺氧是导致 Peyronie 病 (PD) 的最重要的诱发因素之一,其发病机制尚未完全阐明。本研究应用生物信息学方法筛选参与 PD 发病机制的候选缺氧相关基因。引入基因表达综合数据库 (GEO) 数据集 GSE146500 比较正常和 PD 样本之间的转录谱。使用 R 软件确定与缺氧相关的基因的差异表达。在选定的候选基因上,进一步进行了功能分析,包括蛋白质-蛋白质相互作用 (PPI)、基因相关性、基因本体论 (GO) 和京都基因与基因组百科全书 (KEGG) 通路。根据正常和 PD 患者来源的成纤维细胞之间的差异表达,共区分出 66 个候选基因 (24 个在 PD 中表达上调,42 个在 PD 中表达下调)。根据 PPI 分析识别这些候选基因之间的相互作用。功能富集分析揭示了候选基因在一些主要生物过程中的潜在调节功能,特别是在糖酵解/糖异生和碳代谢中。这些发现将有助于进一步研究 PD 的发病机制,从而促进针对 PD 的临床策略的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78e8/9340336/edb81a57bac7/10.1177_15579883221111720-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验