Suppr超能文献

计算方法在研究膜蛋白致病变异体中的应用:数据库开发、分析与预测。

Computational Approaches for Investigating Disease-causing Mutations in Membrane Proteins: Database Development, Analysis and Prediction.

机构信息

Department of Biotechnology, Bhupat and Jyoti Mehta School of BioSciences, Indian Institute of Technology Madras, Chennai 600 036, Tamilnadu, India.

Department of Bioinformatics, Technische Universität München, Wissenschaftszentrum Weihenstephan, Freising, Germany.

出版信息

Curr Top Med Chem. 2022;22(21):1766-1775. doi: 10.2174/1568026622666220726124705.

Abstract

Membrane proteins (MPs) play an essential role in a broad range of cellular functions, serving as transporters, enzymes, receptors, and communicators, and about ~60% of membrane proteins are primarily used as drug targets. These proteins adopt either α-helical or β-barrel structures in the lipid bilayer of a cell/organelle membrane. Mutations in membrane proteins alter their structure and function, and may lead to diseases. Data on disease-causing and neutral mutations in membrane proteins are available in MutHTP and TMSNP databases, which provide additional features based on sequence, structure, topology, and diseases. These databases have been effectively utilized for analysing sequence and structure-based features in disease-causing and neutral mutations in membrane proteins, exploring disease-causing mechanisms, elucidating the relationship between sequence/structural parameters and diseases, and developing computational tools. Further, machine learning-based tools have been developed for identifying disease-causing mutations using diverse features, such as evolutionary information, physicochemical properties, atomic contacts, contact potentials, and the contribution of different energetic terms. These membrane protein-specific tools are helpful in characterizing the effect of new variants in the whole human membrane proteome. In this review, we provide a discussion of the available databases for disease-causing mutations in membrane proteins, followed by a statistical analysis of membrane protein mutations using sequence and structural features. In addition, available prediction tools for identifying disease-causing and neutral mutations in membrane proteins will be described with their performances. This comprehensive review provides deep insights into designing mutation-specific strategies for different diseases.

摘要

膜蛋白(MPs)在广泛的细胞功能中起着至关重要的作用,它们充当着转运蛋白、酶、受体和通讯器,约 60%的膜蛋白主要被用作药物靶点。这些蛋白质在细胞膜或细胞器膜的脂质双层中采用α-螺旋或β-桶结构。膜蛋白的突变会改变其结构和功能,并可能导致疾病。MutHTP 和 TMSNP 数据库中提供了关于膜蛋白中致病和中性突变的数据,这些数据库基于序列、结构、拓扑和疾病提供了其他特征。这些数据库已被有效地用于分析膜蛋白中致病和中性突变的序列和结构特征,探索致病机制,阐明序列/结构参数与疾病之间的关系,并开发计算工具。此外,还开发了基于机器学习的工具,用于使用多种特征(如进化信息、物理化学特性、原子接触、接触势能和不同能量项的贡献)识别致病突变。这些特定于膜蛋白的工具有助于描述整个人类膜蛋白组中新型变体的影响。在这篇综述中,我们讨论了用于膜蛋白致病突变的现有数据库,然后对使用序列和结构特征的膜蛋白突变进行了统计分析。此外,还将描述用于识别膜蛋白中致病和中性突变的可用预测工具及其性能。这篇全面的综述深入探讨了为不同疾病设计特定突变的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验