Suppr超能文献

金介导的多个半胱氨酸芳基化反应构建高度受限的自行车肽。

Gold-Mediated Multiple Cysteine Arylation for the Construction of Highly Constrained Bicycle Peptides.

机构信息

BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.

Eurofins Integrated Discovery Ltd, Fyfield Business & Research Park, Fyfield Road, Ongar CM5 0GS, United Kingdom.

出版信息

Bioconjug Chem. 2022 Aug 17;33(8):1441-1445. doi: 10.1021/acs.bioconjchem.2c00288. Epub 2022 Jul 27.

Abstract

Bicycles are constrained bicyclic peptides formed through reaction of three cysteine residues within a linear sequence with a trivalent, symmetrical small molecule scaffold. Bicycles with high binding affinities to therapeutically important targets can be discovered using screening technologies such as phage display. Increasing the chemical diversity of Bicycles should improve the probability of finding hits to new targets and can be achieved by expanding the toolbox of Bicycle forming chemistries. Gold(III) S-arylation has recently been described as a method for the efficient bioconjugation of cysteine residues under conditions compatible with phage display. Herein, we explore the scope and generality of this methodology for Bicycle construction through the synthesis and evaluation of four novel tris-Gold complexes. These new scaffolds were systematically reacted with a variety of peptide sequences, varying in amino acid loop lengths. All four scaffolds proved to be capable and selective reactive partners for each peptide sequence and afforded the desired Bicycle products in 13-48% isolated yield. This work exemplifies Gold-mediated arylation as a general approach for construction of novel, highly constrained Bicycles.

摘要

自行车是通过线性序列中三个半胱氨酸残基与三价对称小分子支架反应形成的约束性双环肽。可以使用噬菌体展示等筛选技术发现对治疗上重要靶标具有高结合亲和力的自行车。通过扩展自行车形成化学工具箱,可以提高发现新靶标命中的可能性,从而增加自行车的化学多样性。最近有人描述,金(III)S-芳基化是在与噬菌体展示兼容的条件下有效进行半胱氨酸残基生物偶联的方法。在此,我们通过合成和评估四个新的三-Gold 配合物来探索该方法在自行车构建中的范围和通用性。系统地将这些新支架与各种氨基酸环长度变化的肽序列进行反应。所有四个支架都被证明是每种肽序列的有效和选择性反应伙伴,并以 13-48%的分离收率得到所需的自行车产物。这项工作例证了金介导的芳基化作为构建新型高度约束自行车的通用方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验