Suppr超能文献

基于多位点标记的滨海碱蓬(Salicornia persica)划分及其基于监督机器学习方法的种群鉴别。

Multilocus marker-based delimitation of Salicornia persica and its population discrimination assisted by supervised machine learning approach.

机构信息

Sharjah Seed Bank and Herbarium, Environment and Protected Areas Authority (EPAA), Sharjah, United Arab Emirates.

Nature Conservation Sector, Egyptian Environmental Affairs Agency, Cairo, Egypt.

出版信息

PLoS One. 2022 Jul 27;17(7):e0270463. doi: 10.1371/journal.pone.0270463. eCollection 2022.

Abstract

The Salicornia L. has been considered one of the most taxonomically challenging genera due to high morphological plasticity, intergradation between related species, and lack of diagnostic features in preserved herbarium specimens. In the United Arab Emirates (UAE), only one species of this genus, Salicornia europaea, has been reported, though investigating its identity at the molecular level has not yet been undertaken. Moreover, based on growth form and morphology variation between the Ras-Al-Khaimah (RAK) population and the Umm-Al-Quwain (UAQ) population, we suspect the presence of different species or morphotypes. The present study aimed to initially perform species identification using multilocus DNA barcode markers from chloroplast DNA (cpDNA) and nuclear ribosomal DNA (nrDNA), followed by the genetic divergence between two populations (RAK and UAQ) belonging to two different coastal localities in the UAE. The analysis resulted in high-quality multilocus barcode sequences subjected to species discrimination through the unsupervised OTU picking and supervised learning methods. The ETS sequence data from our study sites had high identity with the previously reported sequences of Salicornia persica using NCBI blast and was further confirmed using OTU picking methods viz., TaxonDNAs Species identifier and Assemble Species by Automatic Partitioning (ASAP). Moreover, matK sequence data showed a non-monophyletic relationship, and significant discrimination between the two populations through alignment-based unsupervised OTU picking, alignment-free Co-Phylog, and alignment & alignment-free supervised learning approaches. Other markers viz., rbcL, trnH-psbA, ITS2, and ETS could not distinguish the two populations individually, though their combination with matK (cpDNA & cpDNA+nrDNA) showed enough population discrimination. However, the ITS2+ETS (nrDNA) exhibited much higher genetic divergence, further splitting both the populations into four haplotypes. Based on the observed morphology, genetic divergence, and the number of haplotypes predicted using the matK marker, it can be suggested that two distinct populations (RAK and UAQ) do exist. Further extensive morpho-taxonomic studies are required to determine the inter-population variability of Salicornia in the UAE. Altogether, our results suggest that S. persica is the species that grow in the present study area in UAE, and do not support previous treatments as S. europaea.

摘要

盐角草属(Salicornia L.)由于形态可塑性高、相关物种之间的杂交以及保存在标本馆中的特征缺乏诊断性,因此被认为是分类学上最具挑战性的属之一。在阿拉伯联合酋长国(UAE),仅报道了该属的一个物种盐角草(Salicornia europaea),尽管尚未在分子水平上对其身份进行调查。此外,基于拉斯阿尔卡麦(RAK)种群和乌姆盖万(UAQ)种群之间的生长形态和形态变异,我们怀疑存在不同的物种或形态型。本研究旨在首先使用来自叶绿体 DNA(cpDNA)和核核糖体 DNA(nrDNA)的多基因 DNA 条码标记物进行物种鉴定,然后对属于阿联酋两个不同沿海地区的两个种群(RAK 和 UAQ)进行遗传分化。分析结果得到了高质量的多基因条码序列,通过非监督 OTU 挑选和监督学习方法进行了物种鉴别。使用 NCBI blast 对来自我们研究地点的 ETS 序列数据与之前报道的盐角草属(Salicornia persica)序列进行了高同源性比较,并使用 OTU 挑选方法(TaxonDNAs Species Identifier 和 Assemble Species by Automatic Partitioning(ASAP))进一步确认。此外,matK 序列数据显示出非单系关系,并且通过基于比对的非监督 OTU 挑选、无比对 Co-Phylog 和基于比对和无比对的监督学习方法,在两个种群之间进行了显著的区分。其他标记物,如 rbcL、trnH-psbA、ITS2 和 ETS,虽然与 matK(cpDNA & cpDNA+nrDNA)联合使用可以显示出足够的种群区分度,但无法单独区分两个种群。然而,ITS2+ETS(nrDNA)显示出更高的遗传分化,进一步将两个种群分为四个单倍型。根据观察到的形态、遗传分化和使用 matK 标记预测的单倍型数量,可以认为存在两个不同的种群(RAK 和 UAQ)。需要进一步进行广泛的形态分类学研究,以确定阿联酋盐角草属的种群内变异性。总之,我们的研究结果表明,在阿联酋本研究地区生长的物种是盐角草(S. persica),不支持之前作为 S. europaea 的处理方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70c9/9328517/562b0e882fcf/pone.0270463.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验