Suppr超能文献

“多间隔词匹配法”:一种使用多个间隔词匹配和四重树进行系统发育重建的最大似然法。

'Multi-SpaM': a maximum-likelihood approach to phylogeny reconstruction using multiple spaced-word matches and quartet trees.

作者信息

Dencker Thomas, Leimeister Chris-André, Gerth Michael, Bleidorn Christoph, Snir Sagi, Morgenstern Burkhard

机构信息

Department of Bioinformatics, Institute of Microbiology and Genetics, Universität Göttingen, Goldschmidtstr. 1, 37077 Göttingen, Germany.

Institute for Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, L69 7ZB Liverpool, UK.

出版信息

NAR Genom Bioinform. 2019 Oct 30;2(1):lqz013. doi: 10.1093/nargab/lqz013. eCollection 2020 Mar.

Abstract

Word-based or 'alignment-free' methods for phylogeny inference have become popular in recent years. These methods are much faster than traditional, alignment-based approaches, but they are generally less accurate. Most alignment-free methods calculate 'pairwise' distances between nucleic-acid or protein sequences; these distance values can then be used as input for tree-reconstruction programs such as neighbor-joining. In this paper, we propose the first word-based phylogeny approach that is based on 'multiple' sequence comparison and 'maximum likelihood'. Our algorithm first samples small, gap-free alignments involving four taxa each. For each of these alignments, it then calculates a quartet tree and, finally, the program 'Quartet MaxCut' is used to infer a super tree for the full set of input taxa from the calculated quartet trees. Experimental results show that trees produced with our approach are of high quality.

摘要

近年来,基于单词或“无比对”的系统发育推断方法变得很流行。这些方法比传统的基于比对的方法快得多,但通常准确性较低。大多数无比对方法计算核酸或蛋白质序列之间的“成对”距离;然后这些距离值可以用作诸如邻接法等树重建程序的输入。在本文中,我们提出了第一种基于单词的系统发育方法,该方法基于“多序列”比较和“最大似然法”。我们的算法首先对涉及四个分类单元的小的、无间隙比对进行抽样。对于这些比对中的每一个,然后计算一个四重树,最后,程序“四重最大切割法”用于从计算出的四重树中推断出完整输入分类单元集的超级树。实验结果表明,用我们的方法生成的树质量很高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba57/7671388/5215c840093f/lqz013fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验