Hilleke Katerina P, Zurek Eva
Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA.
Angew Chem Int Ed Engl. 2022 Sep 19;61(38):e202207589. doi: 10.1002/anie.202207589. Epub 2022 Aug 16.
The high critical superconducting temperatures (T s) of metal hydride phases with clathrate-like hydrogen networks have generated great interest. Herein, we employ the Density Functional Theory-Chemical Pressure (DFT-CP) method to explain why certain electropositive elements adopt these structure types, whereas others distort the hydrogenic lattice, thereby decreasing the T . The progressive opening of the H polyhedra in MH phases is shown to arise from internal pressures exerted by large metal atoms, some of which may favor an even higher hydrogen content that loosens the metal atom coordination environments. The stability of the LaH and LaBH phases is tied to stuffing of their shared hydrogen network with either additional hydrogen or boron atoms. The predictive capabilities of DFT-CP are finally applied to the Y-X-H system to identify possible ternary additions yielding a superconducting phase stable to low pressures.
具有类笼状氢网络的金属氢化物相的高临界超导温度(Ts)引起了人们极大的兴趣。在此,我们采用密度泛函理论 - 化学压力(DFT - CP)方法来解释为什么某些正电性元素采用这些结构类型,而其他元素会扭曲氢晶格,从而降低Tc。结果表明,MH相中H多面体的逐渐开放是由大金属原子施加的内部压力引起的,其中一些可能有利于更高的氢含量,从而使金属原子的配位环境变得松散。LaH和LaBH相的稳定性与其共享氢网络被额外的氢或硼原子填充有关。DFT - CP的预测能力最终应用于Y - X - H体系,以确定可能产生在低压下稳定的超导相的三元添加物。