Szudlarek Piotr G, Renskers Christopher, Margine Elena Roxana, Grochala Wojciech
Center of New Technologies, University of Warsaw, Zwirki i Wigury 93, 02089, Warsaw, Poland.
Department of Physics, Applied Physics, and Astronomy, Binghamton University-SUNY, Binghamton, NY, 13902, USA.
Chemphyschem. 2025 Jul 2;26(13):e202500013. doi: 10.1002/cphc.202500013. Epub 2025 May 27.
Metallization of the ionic hydride LiH has never been achieved experimentally, even under high external pressure. Herein, a novel "chemical capacitor" setup to facilitate its metallization under ambient pressure conditions is applied. The findings reveal that a single layer of this material can withstand doping levels up to an impressive 0.61 holes per H atom without structural collapse, as demonstrated in the ZrC | LiH | ZrC system. Additionally, the electron-phonon coupling strength (λ) reaches a remarkable value of 2.1 in the TiO | LiH | TiO system, indicative of the strong coupling regime. Superconductivity calculations further predict a maximum critical temperature ( ) of 17.5 K for 0.31-hole-doped LiH with (LiBaF) as surrounding support layers in the absence of external pressure.
离子氢化物LiH的金属化即使在高外部压力下也从未通过实验实现。在此,应用了一种新颖的“化学电容器”装置以促进其在常压条件下的金属化。研究结果表明,在ZrC | LiH | ZrC系统中所展示的那样,这种材料的单层能够承受高达每个H原子0.61个空穴的掺杂水平而不会发生结构坍塌。此外,在TiO | LiH | TiO系统中,电子 - 声子耦合强度(λ)达到了2.1这一显著值,表明处于强耦合状态。超导性计算进一步预测,在没有外部压力的情况下,以(LiBaF)作为周围支撑层的0.31空穴掺杂LiH的最大临界温度( )为17.5 K。