The BioRobotics Institute and the Department of Excellence in Robotics and Artificial Intelligence, Scuola Superiore Sant'Anna, Pisa, Italy.
Bertarelli Foundation Chair in Translational Neural Engineering, Center for Neuroprosthetics and Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland.
J Neural Eng. 2022 Aug 11;19(4). doi: 10.1088/1741-2552/ac84ab.
Bioelectronic medicine is an emerging field that aims at developing closed-loop neuromodulation protocols for the autonomic nervous system (ANS) to treat a wide range of disorders. When designing a closed-loop protocol for real time modulation of the ANS, the computational execution time and the memory and power demands of the decoding step are important factors to consider. In the context of cardiovascular and respiratory diseases, these requirements may partially explain why closed-loop clinical neuromodulation protocols that adapt stimulation parameters on patient's clinical characteristics are currently missing.Here, we developed a lightweight learning-based decoder for the classification of cardiovascular and respiratory functional challenges from neural signals acquired through intraneural electrodes implanted in the cervical vagus nerve (VN) of five anaesthetized pigs. Our algorithm is based on signal temporal windowing, nine handcrafted features, and random forest (RF) model for classification. Temporal windowing ranging from 50 ms to 1 s, compatible in duration with cardio-respiratory dynamics, was applied to the data in order to mimic a pseudo real-time scenario.We were able to achieve high balanced accuracy (BA) values over the whole range of temporal windowing duration. We identified 500 ms as the optimal temporal windowing duration for both BA values and computational execution time processing, achieving more than 86% for BA and a computational execution time of only ∼6.8 ms. Our algorithm outperformed in terms of BA and computational execution time a state of the art decoding algorithm tested on the same dataset (Vallone20210460a2). We found that RF outperformed other machine learning models such as support vector machines, K-nearest neighbors, and multi-layer perceptrons.Our approach could represent an important step towards the implementation of a closed-loop neuromodulation protocol relying on a single intraneural interface able to perform real-time decoding tasks and selective modulation of the VN.
生物电子医学是一个新兴领域,旨在开发用于自主神经系统 (ANS) 的闭环神经调节协议,以治疗广泛的疾病。在设计用于实时调节 ANS 的闭环协议时,计算执行时间以及解码步骤的内存和功率需求是需要考虑的重要因素。在心血管和呼吸系统疾病的背景下,这些要求可能部分解释了为什么目前缺乏基于患者临床特征自适应刺激参数的闭环临床神经调节协议。在这里,我们为通过植入麻醉猪颈迷走神经 (VN) 的神经内电极获取的神经信号的心血管和呼吸功能挑战分类开发了一种基于学习的轻量级解码器。我们的算法基于信号时间窗、九个手工制作的特征和随机森林 (RF) 模型进行分类。时间窗从 50ms 到 1s 不等,与心肺动力学持续时间兼容,应用于数据以模拟伪实时场景。我们能够在整个时间窗持续时间范围内实现高平衡准确性 (BA) 值。我们确定 500ms 是 BA 值和计算执行时间处理的最佳时间窗持续时间,BA 值超过 86%,计算执行时间仅约 6.8ms。与在同一数据集上测试的一种最先进的解码算法(Vallone20210460a2)相比,我们的算法在 BA 和计算执行时间方面表现出色。我们发现 RF 优于其他机器学习模型,如支持向量机、K-最近邻和多层感知机。我们的方法可能是朝着实现基于单个神经内接口的闭环神经调节协议迈出的重要一步,该接口能够执行实时解码任务和选择性调节 VN。