Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1757-1760. doi: 10.1109/EMBC48229.2022.9871818.
Bioelectronic medicine is a new approach for developing closed-loop neuromodulation protocols on the peripheral nervous system (PNS) to treat a wide range of disorders currently treated with pharmacological approaches. Algorithms need to have low computational cost in order to acquire, process and model data for the modulation of the PNS in real time. Here, we present a fast learning-based decoding algorithm for the classification of cardiovascular and respiratory functional alterations (i.e., challenges) by using neural signals recorded from intraneural electrodes implanted in the vagus nerve of 5 pigs. Our algorithm relies on 9 handcrafted features, extracted following signal temporal windowing, and a multi-layer perceptron (MLP) for feature classification. We achieved fast and accurate classification of the challenges, with a computational time for feature extraction and prediction lower than 1.5 ms. The MLP achieved a balanced accuracy higher than 80 % for all recordings. Our algorithm could represent a step towards the development of a closed-loop system based on a single intraneural interface with both the potential of real time classification and selective modulation of the PNS.
生物电子医学是一种在周围神经系统(PNS)上开发闭环神经调节方案的新方法,旨在治疗目前用药物方法治疗的各种疾病。为了实时对 PNS 进行调制,算法需要具有低计算成本,以便采集、处理和建模数据。在这里,我们提出了一种基于快速学习的解码算法,用于对 5 头猪的迷走神经内植入的神经内电极记录的神经信号进行心血管和呼吸功能改变(即挑战)的分类。我们的算法依赖于 9 个手工制作的特征,这些特征是通过信号时间窗口提取的,以及一个多层感知器(MLP)进行特征分类。我们实现了对挑战的快速准确分类,特征提取和预测的计算时间低于 1.5 毫秒。对于所有记录,MLP 的平衡准确率都高于 80%。我们的算法可以代表朝着基于单个神经内接口的闭环系统发展迈出的一步,该系统具有实时分类和 PNS 选择性调制的潜力。