Suppr超能文献

贝叶斯集成在用于感觉运动控制的尖峰神经网络系统中。

Bayesian Integration in a Spiking Neural System for Sensorimotor Control.

机构信息

Nearlab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20133, Milan, Italy

Department of Brain and Behavioral Sciences, University of Pavia 27100, Italy

出版信息

Neural Comput. 2022 Aug 16;34(9):1893-1914. doi: 10.1162/neco_a_01525.

Abstract

The brain continuously estimates the state of body and environment, with specific regions that are thought to act as Bayesian estimator, optimally integrating noisy and delayed sensory feedback with sensory predictions generated by the cerebellum. In control theory, Bayesian estimators are usually implemented using high-level representations. In this work, we designed a new spike-based computational model of a Bayesian estimator. The state estimator receives spiking activity from two neural populations encoding the sensory feedback and the cerebellar prediction, and it continuously computes the spike variability within each population as a reliability index of the signal these populations encode. The state estimator output encodes the current state estimate. We simulated a reaching task at different stages of cerebellar learning. The activity of the sensory feedback neurons encoded a noisy version of the trajectory after actual movement, with an almost constant intrapopulation spiking variability. Conversely, the activity of the cerebellar output neurons depended on the phase of the learning process. Before learning, they fired at their baseline not encoding any relevant information, and the variability was set to be higher than that of the sensory feedback (more reliable, albeit delayed). When learning was complete, their activity encoded the trajectory before the actual execution, providing an accurate sensory prediction; in this case, the variability was set to be lower than that of the sensory feedback. The state estimator model optimally integrated the neural activities of the afferent populations, so that the output state estimate was primarily driven by sensory feedback in prelearning and by the cerebellar prediction in postlearning. It was able to deal even with more complex scenarios, for example, by shifting the dominant source during the movement execution if information availability suddenly changed. The proposed tool will be a critical block within integrated spiking, brain-inspired control systems for simulations of sensorimotor tasks.

摘要

大脑不断估计身体和环境的状态,特定区域被认为充当贝叶斯估计器,以最佳方式整合带有小脑产生的感觉预测的嘈杂和延迟的感觉反馈。在控制理论中,贝叶斯估计器通常使用高级表示来实现。在这项工作中,我们设计了一种新的基于尖峰的贝叶斯估计器计算模型。状态估计器接收两个编码感觉反馈和小脑预测的神经元群体的尖峰活动,并持续计算每个群体内的尖峰变异性作为这些群体编码信号的可靠性指标。状态估计器输出编码当前状态估计。我们在小脑学习的不同阶段模拟了一个到达任务。感觉反馈神经元的活动编码了实际运动后的轨迹的噪声版本,其群体内尖峰变异性几乎恒定。相反,小脑输出神经元的活动取决于学习过程的阶段。在学习之前,它们在基线处发射,不编码任何相关信息,并且变异性被设置为高于感觉反馈(更可靠,尽管延迟)。当学习完成时,它们的活动编码了实际执行之前的轨迹,提供了准确的感觉预测;在这种情况下,变异性被设置为低于感觉反馈。状态估计器模型最佳地整合了传入群体的神经活动,使得输出状态估计主要由预学习中的感觉反馈和后学习中的小脑预测驱动。它甚至能够处理更复杂的情况,例如,如果信息可用性突然改变,在运动执行过程中转移主导源。该提议的工具将成为用于模拟感觉运动任务的集成尖峰、脑启发控制系统的关键模块。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验