Suppr超能文献

基于粒子滤波的传感器运动系统贝叶斯状态估计。

Bayesian State Estimation in Sensorimotor Systems With Particle Filtering.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Jul;28(7):1528-1538. doi: 10.1109/TNSRE.2020.2996963.

Abstract

In sensorimotor control, sensory feedback integrates with forward models to alleviate the impacts of sensory noise and delay on state estimation. The sensorimotor integration is subject to Bayesian inference and has been formulated by the Kalman filter in computational neuroscience. However, the Kalman filter, as an artificial optimal estimator to address the abstract characteristics of spatial perception, is inadequate to present the neural computation in the cerebellum. Besides, the nonlinear neuromuscular dynamics with tightly coupled state variables also substantially impedes the implementation of Kalman filter in realistic sensorimotor systems. Here we address the sensorimotor state estimate by using the particle filter, a nonlinear Bayesian estimator that can be implemented in arbitrary dynamic systems with the neurocomputational compatibility. Particle filtering is explicitly implemented in a biophysically realistic sensorimotor model of an upper limb integrating Hill-type muscles, tendons, skeleton, and primary afferents. By involving the command noises, the constructed neuromusculoskeletal model qualitatively represents the experimental variability in center-out reaching movements. Despite the initial estimation uncertainty and sensorimotor noises, the particle filter is able to approximate the actual states in forward-reaching movements. Furthermore, the simulated hand-position estimate is consistent with the experimental results, in the presence of forward model errors, neural noises, and sensory delays. The particle filter is demonstrated to effectively implement the Bayesian state estimation in biophysically realistic sensorimotor systems and provide better compatibility with neuronal computation than the Kalman filter.

摘要

在感觉运动控制中,感觉反馈与前馈模型相结合,以减轻感觉噪声和延迟对状态估计的影响。感觉运动整合受贝叶斯推理的影响,并已在计算神经科学中通过卡尔曼滤波器来表述。然而,卡尔曼滤波器作为解决空间感知抽象特征的人工最优估计器,不足以呈现小脑中的神经计算。此外,具有紧密耦合状态变量的非线性神经肌肉动力学也极大地阻碍了卡尔曼滤波器在现实感觉运动系统中的实现。在这里,我们使用粒子滤波器来解决感觉运动状态估计问题,粒子滤波器是一种非线性贝叶斯估计器,可以在具有神经计算兼容性的任意动态系统中实现。粒子滤波在一个整合了 Hill 型肌肉、肌腱、骨骼和初级传入神经的上肢生物物理感觉运动模型中被明确实现。通过涉及命令噪声,所构建的神经肌肉骨骼模型定性地表示了中心向外运动的实验可变性。尽管存在初始估计不确定性和感觉运动噪声,粒子滤波器仍能够在向前运动中近似实际状态。此外,在手的位置模拟估计与实验结果一致,即使存在前馈模型误差、神经噪声和感觉延迟。粒子滤波器被证明能够有效地在生物物理感觉运动系统中实现贝叶斯状态估计,并比卡尔曼滤波器具有更好的与神经元计算的兼容性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验