Suppr超能文献

与经典求解器相比,量子退火在优化问题中的应用、挑战和局限性。

Quantum annealing applications, challenges and limitations for optimisation problems compared to classical solvers.

作者信息

Quinton Finley Alexander, Myhr Per Arne Sevle, Barani Mostafa, Crespo Del Granado Pedro, Zhang Hongyu

机构信息

Department of Industrial Economics and Technology Management, Norwegian University of Science and Technology, 7491, Trondheim, Norway.

Centre for Cosmology, Particle Physics and Phenomenology, Université Catholique de Louvain, 1348, Louvain-la-Neuve, Belgium.

出版信息

Sci Rep. 2025 Apr 13;15(1):12733. doi: 10.1038/s41598-025-96220-2.

Abstract

Quantum computing is rapidly advancing, harnessing the power of qubits' superposition and entanglement for computational advantages over classical systems. However, scalability poses a primary challenge for these machines. By implementing a hybrid workflow between classical and quantum computing instances, D-Wave has succeeded in pushing this boundary to the realm of industrial use. Furthermore, they have recently opened up to mixed integer linear programming (MILP) problems, expanding their applicability to many relevant problems in the field of optimisation. However, the extent of their suitability for diverse problem categories and their computational advantages remains unclear. This study conducts a comprehensive examination by applying a selection of diverse case studies to benchmark the performance of D-Wave's hybrid solver against that of industry-leading solvers such as CPLEX, Gurobi, and IPOPT. The findings indicate that D-Wave's hybrid solver is currently most advantageous for integer quadratic objective functions and shows potential for quadratic constraints. To illustrate this, we applied it to a real-world energy problem, specifically the MILP unit commitment problem. While D-Wave can solve such problems, its performance has not yet matched that of its classical counterparts.

摘要

量子计算正在迅速发展,利用量子比特的叠加和纠缠特性来获得超越经典系统的计算优势。然而,可扩展性是这些机器面临的主要挑战。通过在经典计算实例和量子计算实例之间实现混合工作流程,D-Wave成功地将这一边界拓展到了工业应用领域。此外,他们最近还涉足了混合整数线性规划(MILP)问题,将其适用性扩展到优化领域的许多相关问题。然而,它们对不同问题类别的适用性程度及其计算优势仍不明确。本研究通过应用一系列不同的案例研究进行全面考察,以将D-Wave混合求解器的性能与CPLEX、Gurobi和IPOPT等行业领先求解器的性能进行基准对比。研究结果表明,D-Wave混合求解器目前对于整数二次目标函数最为有利,并且在二次约束方面显示出潜力。为了说明这一点,我们将其应用于一个实际的能源问题,即MILP机组组合问题。虽然D-Wave可以解决此类问题,但其性能尚未达到经典同类产品的水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de7c/11994798/bf4550060638/41598_2025_96220_Fig1_HTML.jpg

相似文献

2
Solving the resource constrained project scheduling problem with quantum annealing.
Sci Rep. 2024 Jul 22;14(1):16784. doi: 10.1038/s41598-024-67168-6.
3
Solving large break minimization problems in a mirrored double round-robin tournament using quantum annealing.
PLoS One. 2022 Apr 8;17(4):e0266846. doi: 10.1371/journal.pone.0266846. eCollection 2022.
4
Travel time optimization on multi-AGV routing by reverse annealing.
Sci Rep. 2022 Oct 22;12(1):17753. doi: 10.1038/s41598-022-22704-0.
6
Lossy compression of matrices by black box optimisation of mixed integer nonlinear programming.
Sci Rep. 2022 Sep 15;12(1):15482. doi: 10.1038/s41598-022-19763-8.
7
Benchmark of quantum-inspired heuristic solvers for quadratic unconstrained binary optimization.
Sci Rep. 2022 Feb 9;12(1):2146. doi: 10.1038/s41598-022-06070-5.
8
A Hybrid Algorithm of Ant Colony and Benders Decomposition for Large-Scale Mixed Integer Linear Programming.
Comput Intell Neurosci. 2022 Aug 31;2022:1634995. doi: 10.1155/2022/1634995. eCollection 2022.
10
Hybrid quantum-classical computation for automatic guided vehicles scheduling.
Sci Rep. 2024 Sep 18;14(1):21809. doi: 10.1038/s41598-024-72101-y.

引用本文的文献

本文引用的文献

1
Interferometric single-shot parity measurement in InAs-Al hybrid devices.
Nature. 2025 Feb;638(8051):651-655. doi: 10.1038/s41586-024-08445-2. Epub 2025 Feb 19.
2
Quantum annealing for industry applications: introduction and review.
Rep Prog Phys. 2022 Sep 21;85(10). doi: 10.1088/1361-6633/ac8c54.
3
Practical quantum advantage in quantum simulation.
Nature. 2022 Jul;607(7920):667-676. doi: 10.1038/s41586-022-04940-6. Epub 2022 Jul 27.
4
Quantum supremacy using a programmable superconducting processor.
Nature. 2019 Oct;574(7779):505-510. doi: 10.1038/s41586-019-1666-5. Epub 2019 Oct 23.
5
An adaptive variational algorithm for exact molecular simulations on a quantum computer.
Nat Commun. 2019 Jul 8;10(1):3007. doi: 10.1038/s41467-019-10988-2.
6
Determination and correction of persistent biases in quantum annealers.
Sci Rep. 2016 Jan 19;6:18628. doi: 10.1038/srep18628.
8
Nonperturbative entangling gates between distant qubits using uniform cold atom chains.
Phys Rev Lett. 2011 Apr 8;106(14):140501. doi: 10.1103/PhysRevLett.106.140501. Epub 2011 Apr 4.
9
Quantum computers.
Nature. 2010 Mar 4;464(7285):45-53. doi: 10.1038/nature08812.
10
Optimization by simulated annealing.
Science. 1983 May 13;220(4598):671-80. doi: 10.1126/science.220.4598.671.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验