Department of Mechanical Engineering and Materials Science and Engineering Program, State University of New York at Binghamton, Binghamton, NY, USA.
Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
Nature. 2022 Jul;607(7920):708-713. doi: 10.1038/s41586-022-04880-1. Epub 2022 Jul 27.
Most engineering materials are based on multiphase microstructures produced either through the control of phase equilibria or by the fabrication of different materials as in thin-film processing. In both processes, the microstructure relaxes towards equilibrium by mismatch dislocations (or geometric misfit dislocations) across the heterophase interfaces. Despite their ubiquitous presence, directly probing the dynamic action of mismatch dislocations has been unachievable owing to their buried nature. Here, using the interfacial transformation of copper oxide to copper as an example, we demonstrate the role of mismatch dislocations in modulating oxide-to-metal interfacial transformations in an intermittent manner, by which the lateral flow of interfacial ledges is pinned at the core of mismatch dislocations until the dislocation climbs to the new oxide/metal interface location. Together with atomistic calculations, we identify that the pinning effect is associated with the non-local transport of metal atoms to fill vacancies at the dislocation core. These results provide mechanistic insight into solid-solid interfacial transformations and have substantial implications for utilizing structural defects at buried interfaces to modulate mass transport and transformation kinetics.
大多数工程材料都是基于通过控制相平衡或通过制造不同材料(如薄膜处理)而产生的多相微观结构。在这两个过程中,微观结构通过异质相界面上的失配位错(或几何失配位错)向平衡弛豫。尽管它们无处不在,但由于其埋置性质,直接探测失配位错的动态作用是无法实现的。在这里,我们以氧化铜向铜的界面转变为例,证明了失配位错在以间歇方式调节氧化物-金属界面转变中的作用,通过这种作用,界面脊的横向流动在失配位错的核心处被固定,直到位错攀爬到新的氧化物/金属界面位置。结合原子计算,我们确定这种固定效应与金属原子的非局部输运有关,以填充位错核心处的空位。这些结果为固-固界面转变提供了机制上的见解,并对利用埋置界面处的结构缺陷来调节质量输运和转变动力学具有重要意义。