Suppr超能文献

侧面影像有助于评估身体脂肪分布及相关的心脏代谢风险。

Silhouette images enable estimation of body fat distribution and associated cardiometabolic risk.

作者信息

Klarqvist Marcus D R, Agrawal Saaket, Diamant Nathaniel, Ellinor Patrick T, Philippakis Anthony, Ng Kenney, Batra Puneet, Khera Amit V

机构信息

Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.

出版信息

NPJ Digit Med. 2022 Jul 27;5(1):105. doi: 10.1038/s41746-022-00654-1.

Abstract

Inter-individual variation in fat distribution is increasingly recognized as clinically important but is not routinely assessed in clinical practice, in part because medical imaging has not been practical to deploy at scale for this task. Here, we report a deep learning model trained on an individual's body shape outline-or "silhouette" -that enables accurate estimation of specific fat depots of interest, including visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes, and VAT/ASAT ratio. Two-dimensional coronal and sagittal silhouettes are constructed from whole-body magnetic resonance images in 40,032 participants of the UK Biobank and used as inputs for a convolutional neural network to predict each of these quantities. Mean age of the study participants is 65 years and 51% are female. A cross-validated deep learning model trained on silhouettes enables accurate estimation of VAT, ASAT, and GFAT volumes (R: 0.88, 0.93, and 0.93, respectively), outperforming a comparator model combining anthropometric and bioimpedance measures (ΔR = 0.05-0.13). Next, we study VAT/ASAT ratio, a nearly body-mass index (BMI)-and waist circumference-independent marker of metabolically unhealthy fat distribution. While the comparator model poorly predicts VAT/ASAT ratio (R: 0.17-0.26), a silhouette-based model enables significant improvement (R: 0.50-0.55). Increased silhouette-predicted VAT/ASAT ratio is associated with increased risk of prevalent and incident type 2 diabetes and coronary artery disease independent of BMI and waist circumference. These results demonstrate that body silhouette images can estimate important measures of fat distribution, laying the scientific foundation for scalable population-based assessment.

摘要

个体间脂肪分布的差异越来越被认为具有临床重要性,但在临床实践中并未常规评估,部分原因是医学成像无法大规模应用于这项任务。在此,我们报告了一种基于个体身体形状轮廓(即“剪影”)训练的深度学习模型,该模型能够准确估计感兴趣的特定脂肪库,包括内脏脂肪(VAT)、腹部皮下脂肪(ASAT)和臀股部脂肪(GFAT)的体积,以及VAT/ASAT比值。从英国生物银行的40,032名参与者的全身磁共振图像中构建二维冠状面和矢状面剪影,并将其用作卷积神经网络的输入,以预测上述各项指标。研究参与者的平均年龄为65岁,其中51%为女性。基于剪影训练的交叉验证深度学习模型能够准确估计VAT、ASAT和GFAT的体积(相关系数R分别为0.88、0.93和0.93),优于结合人体测量和生物阻抗测量的对照模型(ΔR = 0.05 - 0.13)。接下来,我们研究VAT/ASAT比值,这是一种几乎与体重指数(BMI)和腰围无关的代谢不健康脂肪分布标志物。虽然对照模型对VAT/ASAT比值的预测效果较差(R为0.17 - 0.26),但基于剪影的模型则有显著改善(R为0.50 - 0.55)。剪影预测的VAT/ASAT比值升高与2型糖尿病和冠状动脉疾病的患病率及发病率增加相关,且独立于BMI和腰围。这些结果表明,身体剪影图像可以估计脂肪分布的重要指标,为基于人群的可扩展评估奠定了科学基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4fa/9329470/d7a5dd5c6e75/41746_2022_654_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验