Klarqvist Marcus D R, Agrawal Saaket, Diamant Nathaniel, Ellinor Patrick T, Philippakis Anthony, Ng Kenney, Batra Puneet, Khera Amit V
Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
NPJ Digit Med. 2022 Jul 27;5(1):105. doi: 10.1038/s41746-022-00654-1.
Inter-individual variation in fat distribution is increasingly recognized as clinically important but is not routinely assessed in clinical practice, in part because medical imaging has not been practical to deploy at scale for this task. Here, we report a deep learning model trained on an individual's body shape outline-or "silhouette" -that enables accurate estimation of specific fat depots of interest, including visceral (VAT), abdominal subcutaneous (ASAT), and gluteofemoral (GFAT) adipose tissue volumes, and VAT/ASAT ratio. Two-dimensional coronal and sagittal silhouettes are constructed from whole-body magnetic resonance images in 40,032 participants of the UK Biobank and used as inputs for a convolutional neural network to predict each of these quantities. Mean age of the study participants is 65 years and 51% are female. A cross-validated deep learning model trained on silhouettes enables accurate estimation of VAT, ASAT, and GFAT volumes (R: 0.88, 0.93, and 0.93, respectively), outperforming a comparator model combining anthropometric and bioimpedance measures (ΔR = 0.05-0.13). Next, we study VAT/ASAT ratio, a nearly body-mass index (BMI)-and waist circumference-independent marker of metabolically unhealthy fat distribution. While the comparator model poorly predicts VAT/ASAT ratio (R: 0.17-0.26), a silhouette-based model enables significant improvement (R: 0.50-0.55). Increased silhouette-predicted VAT/ASAT ratio is associated with increased risk of prevalent and incident type 2 diabetes and coronary artery disease independent of BMI and waist circumference. These results demonstrate that body silhouette images can estimate important measures of fat distribution, laying the scientific foundation for scalable population-based assessment.
个体间脂肪分布的差异越来越被认为具有临床重要性,但在临床实践中并未常规评估,部分原因是医学成像无法大规模应用于这项任务。在此,我们报告了一种基于个体身体形状轮廓(即“剪影”)训练的深度学习模型,该模型能够准确估计感兴趣的特定脂肪库,包括内脏脂肪(VAT)、腹部皮下脂肪(ASAT)和臀股部脂肪(GFAT)的体积,以及VAT/ASAT比值。从英国生物银行的40,032名参与者的全身磁共振图像中构建二维冠状面和矢状面剪影,并将其用作卷积神经网络的输入,以预测上述各项指标。研究参与者的平均年龄为65岁,其中51%为女性。基于剪影训练的交叉验证深度学习模型能够准确估计VAT、ASAT和GFAT的体积(相关系数R分别为0.88、0.93和0.93),优于结合人体测量和生物阻抗测量的对照模型(ΔR = 0.05 - 0.13)。接下来,我们研究VAT/ASAT比值,这是一种几乎与体重指数(BMI)和腰围无关的代谢不健康脂肪分布标志物。虽然对照模型对VAT/ASAT比值的预测效果较差(R为0.17 - 0.26),但基于剪影的模型则有显著改善(R为0.50 - 0.55)。剪影预测的VAT/ASAT比值升高与2型糖尿病和冠状动脉疾病的患病率及发病率增加相关,且独立于BMI和腰围。这些结果表明,身体剪影图像可以估计脂肪分布的重要指标,为基于人群的可扩展评估奠定了科学基础。