Department of Pathology, Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
Chemical Biology Laboratory, National Cancer Institute, Frederick, MD, USA.
Nature. 2022 Aug;608(7921):192-198. doi: 10.1038/s41586-022-04984-8. Epub 2022 Jul 27.
In response to hormones and growth factors, the class I phosphoinositide-3-kinase (PI3K) signalling network functions as a major regulator of metabolism and growth, governing cellular nutrient uptake, energy generation, reducing cofactor production and macromolecule biosynthesis. Many of the driver mutations in cancer with the highest recurrence, including in receptor tyrosine kinases, Ras, PTEN and PI3K, pathologically activate PI3K signalling. However, our understanding of the core metabolic program controlled by PI3K is almost certainly incomplete. Here, using mass-spectrometry-based metabolomics and isotope tracing, we show that PI3K signalling stimulates the de novo synthesis of one of the most pivotal metabolic cofactors: coenzyme A (CoA). CoA is the major carrier of activated acyl groups in cells and is synthesized from cysteine, ATP and the essential nutrient vitamin B5 (also known as pantothenate). We identify pantothenate kinase 2 (PANK2) and PANK4 as substrates of the PI3K effector kinase AKT. Although PANK2 is known to catalyse the rate-determining first step of CoA synthesis, we find that the minimally characterized but highly conserved PANK4 is a rate-limiting suppressor of CoA synthesis through its metabolite phosphatase activity. Phosphorylation of PANK4 by AKT relieves this suppression. Ultimately, the PI3K-PANK4 axis regulates the abundance of acetyl-CoA and other acyl-CoAs, CoA-dependent processes such as lipid metabolism and proliferation. We propose that these regulatory mechanisms coordinate cellular CoA supplies with the demands of hormone/growth-factor-driven or oncogene-driven metabolism and growth.
针对激素和生长因子,I 类磷酸肌醇-3-激酶(PI3K)信号网络作为代谢和生长的主要调节剂,调节细胞营养物质摄取、能量产生、还原辅因子生成和大分子生物合成。在具有最高复发率的癌症中,包括受体酪氨酸激酶、Ras、PTEN 和 PI3K 的许多驱动突变,病理性地激活了 PI3K 信号。然而,我们对 PI3K 控制的核心代谢程序的理解几乎肯定是不完整的。在这里,我们使用基于质谱的代谢组学和同位素示踪法,表明 PI3K 信号刺激了一种最关键的代谢辅因子的从头合成:辅酶 A(CoA)。CoA 是细胞中激活酰基的主要载体,由半胱氨酸、ATP 和必需营养素维生素 B5(也称为泛酸)合成。我们确定了泛酰激酶 2(PANK2)和 PANK4 是 PI3K 效应激酶 AKT 的底物。虽然 PANK2 已知催化 CoA 合成的限速第一步,但我们发现,虽然特征不太明显但高度保守的 PANK4 通过其代谢物磷酸酶活性,是 CoA 合成的限速抑制物。AKT 对 PANK4 的磷酸化解除了这种抑制。最终,PI3K-PANK4 轴调节乙酰 CoA 和其他酰基辅酶 A 的丰度,以及 CoA 依赖的过程,如脂质代谢和增殖。我们提出,这些调节机制协调细胞 CoA 供应与激素/生长因子驱动或致癌基因驱动的代谢和生长的需求。