Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
X-STAR, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.
Sci Rep. 2022 Jul 27;12(1):12101. doi: 10.1038/s41598-022-16356-3.
The deep ocean is Earth's largest habitable space inhabited by diverse benthic organisms. Infauna play crucial roles in shaping sedimentary structures, relocating organic matter, porewater chemistry, and hence biogeochemical cycles. However, the visualization and quantification of infauna in situ inside deep-sea sediment has been challenging, due to their sparse distribution and that deep-sea cameras do not visualize animals living below the sediment surface. Here, we newly developed a 3D acoustic "coring" system and applied it to visualize and detect burrowing bivalves in deep-sea sediments. The in situ acoustic observation was conducted at a dense colony of vesicomyid clams in a hydrocarbon seep in Sagami Bay, Japan, focusing on a patch of juvenile clams with a completely infaunal life style. We clearly observed strong backscatters from the top and lower edges of animals in our 3D acoustic data. At least 17 reflectors were identified in the survey area (625 cm), interpreted to correspond to living clams. The estimated depths of the lower edge of clams ranged between 41 and 98 mm. The acoustic system presented here is effective for detecting and monitoring infauna with calcified exoskeletons. This novel tool will help us better assess and understand the distribution of deep-sea infauna, particularly those groups with hard exoskeletons, as well as biogeochemical cycles.
深海是地球最大的可居住空间,栖息着多种多样的底栖生物。在深海沉积物中,内栖动物在塑造沉积结构、搬运有机质、改变孔隙水化学性质以及参与生物地球化学循环等方面发挥着关键作用。然而,由于内栖动物在深海沉积物中的分布稀疏,且深海摄像机无法可视化生活在沉积物表面以下的动物,因此对深海沉积物中内栖动物的原位可视化和定量一直具有挑战性。在这里,我们新开发了一种 3D 声学“取芯”系统,并将其应用于可视化和检测深海沉积物中的挖掘双壳类动物。在日本相模湾的一个烃渗漏区中,对密集分布的 vesicomyid 蛤类群体进行了原位声学观测,重点研究了一个具有完全内栖生活方式的幼年蛤类斑块。我们在 3D 声学数据中清楚地观察到来自动物顶部和下部边缘的强烈反向散射。在调查区域(625 cm)中至少识别出 17 个反射器,解释为对应于活蛤类。蛤类下部边缘的估计深度在 41 至 98 毫米之间。这里提出的声学系统对于检测和监测具有钙化外壳的内栖动物是有效的。这种新工具将帮助我们更好地评估和了解深海内栖动物的分布情况,特别是那些具有坚硬外壳的动物群体,以及生物地球化学循环。