Suppr超能文献

改进用于柱列的自动进样系统以提高分析重现性。

Improvement of an Automated Sample Injection System for Pillar Array Columns to Increase Analytical Reproducibility.

机构信息

Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan.

Technology Research Laboratory, Shimadzu Corporation, Kyoto 619-0237, Japan.

出版信息

Molecules. 2022 Jul 23;27(15):4715. doi: 10.3390/molecules27154715.

Abstract

In our previous study, we developed an automatic sample injection system for pillar array columns for quantitative analysis. An autosampler was used to maintain a constant sample injection volume. However, the sample was diluted during injection using the autosampler, thus deteriorating the analytical reproducibility. In this study, we have substituted the autosampler with a syringe pump to overcome the abovementioned problem and improve the system. Sample dilution was avoided by filling the entire capillary with the sample at a constant rate. This improved system also increased the analytical reproducibility. In the previous system, the relative standard deviation (RSD) exceeded 17% of the peak height for coumarin dyes. In contrast, the improved system decreased the RSD to the range 1.2-1.8%. The analytical reproducibility was evaluated by using five types of amino acids. The RSD of each peak height was within 3.0%, confirming good reproducibility. These results indicate that the sample injection method developed in this study can be applied to biological sample analyses as a simple quantitative analysis method for pillar array columns.

摘要

在我们之前的研究中,我们开发了一种用于柱列阵列的自动进样系统,用于定量分析。进样器用于保持恒定的进样体积。然而,进样过程中,样品会被进样器稀释,从而降低了分析重现性。在这项研究中,我们用注射器泵取代了进样器,以克服上述问题并改进系统。通过以恒定的速度将整个毛细管充满样品,避免了样品稀释。该改进后的系统还提高了分析重现性。在前一个系统中,香豆素染料的峰高相对标准偏差(RSD)超过了 17%。相比之下,改进后的系统将 RSD 降低到 1.2-1.8%。使用五种类型的氨基酸评估了分析重现性。每个峰高的 RSD 均在 3.0%以内,表明重现性良好。这些结果表明,本研究中开发的进样方法可作为一种简单的定量分析方法,应用于柱列阵列的生物样品分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b06/9332314/02a0071c4a10/molecules-27-04715-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验