Suppr超能文献

基于通道注意力机制的新型深度学习方法在水下目标识别中的应用

A Novel Deep-Learning Method with Channel Attention Mechanism for Underwater Target Recognition.

机构信息

School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.

出版信息

Sensors (Basel). 2022 Jul 23;22(15):5492. doi: 10.3390/s22155492.

Abstract

The core of underwater acoustic recognition is to extract the spectral features of targets. The running speed and track of the targets usually result in a Doppler shift, which poses significant challenges for recognizing targets with different Doppler frequencies. This paper proposes deep learning with a channel attention mechanism approach for underwater acoustic recognition. It is based on three crucial designs. Feature structures can obtain high-dimensional underwater acoustic data. The feature extraction model is the most important. First, we develop a ResNet to extract the deep abstraction spectral features of the targets. Then, the channel attention mechanism is introduced in the camResNet to enhance the energy of stable spectral features of residual convolution. This is conducive to subtly represent the inherent characteristics of the targets. Moreover, a feature classification approach based on one-dimensional convolution is applied to recognize targets. We evaluate our approach on challenging data containing four kinds of underwater acoustic targets with different working conditions. Our experiments show that the proposed approach achieves the best recognition accuracy (98.2%) compared with the other approaches. Moreover, the proposed approach is better than the ResNet with a widely used channel attention mechanism for data with different working conditions.

摘要

水下声目标识别的核心是提取目标的声谱特征。目标的运动速度和轨迹通常会导致多普勒频移,这给不同多普勒频率目标的识别带来了很大的挑战。本文提出了一种基于通道注意力机制的深度学习方法用于水下声目标识别。该方法基于三个关键设计。特征结构可以获取高维水下声数据。特征提取模型是最重要的。首先,我们开发了一个 ResNet 来提取目标的深度抽象声谱特征。然后,在 camResNet 中引入通道注意力机制来增强残差卷积稳定声谱特征的能量。这有助于微妙地表示目标的固有特征。此外,还应用了一种基于一维卷积的特征分类方法来识别目标。我们在包含四种不同工作条件的水下声目标的具有挑战性的数据上评估了我们的方法。实验表明,与其他方法相比,所提出的方法的识别准确率最高(98.2%)。此外,与其他广泛使用通道注意力机制的 ResNet 相比,该方法在不同工作条件的数据上表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f20/9331384/d0f3a17f7047/sensors-22-05492-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验