Suppr超能文献

基于多层特征和注意力机制的水下舰艇声音识别

Underwater vessel sound recognition based on multi-layer feature and attention mechanism.

作者信息

Wei Wei, Li Jing, Han Yucheng, Zhang Lili, Cui Ning, Yu Pei, Tan Hongxin, Yang Xudong, Yang Kang

机构信息

Beijing Institute of Petrochemical Technology, Beijing, 102617, China.

China Fire and Rescue Institute, Beijing, 102202, China.

出版信息

Sci Rep. 2025 Apr 2;15(1):11239. doi: 10.1038/s41598-025-95562-1.

Abstract

Vessel recognition based on hydroacoustic signals is an important research area. The marine environment is complex and variable, which makes the transmission and reception process of the signals have some random cases. At the same time, there are various interference and noise sources in the water, such as waves, underwater equipment, marine organisms, etc., which bring difficulties to the identification and analysis of vessel targets. This paper proposed a model named Emphasized Dimension Attention and Future Fusion-Time Delay Neural Network (EDAFF-TDNN). The model adjusts the weights of the feature map dynamically by learning the correlation between dimensions through Squeeze and Excitation Block (SE-Block), which enables the model to capture the contextual information, thus the model performance is improved. The mechanism of feature fusion is also introduced to extract multi-layer features to improve the feature representation capability. The attention mechanism is added on top of TDNN. By considering the differences of each feature dimension, it enables the model to focus on the key information when learning feature representations. Which improves the model performance in complex scenarios. In addition, experiments of the model on the ShipsEar dataset show a recognition accuracy of 98.2%.

摘要

基于水声信号的船舶识别是一个重要的研究领域。海洋环境复杂多变,这使得信号的传输和接收过程存在一些随机情况。同时,水中存在各种干扰和噪声源,如波浪、水下设备、海洋生物等,给船舶目标的识别和分析带来困难。本文提出了一种名为增强维度注意力与未来融合-时延神经网络(EDAFF-TDNN)的模型。该模型通过挤压激励模块(SE-Block)学习维度之间的相关性来动态调整特征图的权重,从而使模型能够捕捉上下文信息,进而提高模型性能。还引入了特征融合机制来提取多层特征,以提高特征表示能力。在时延神经网络(TDNN)之上添加了注意力机制。通过考虑每个特征维度的差异,使模型在学习特征表示时能够关注关键信息,从而提高模型在复杂场景下的性能。此外,该模型在ShipsEar数据集上的实验显示识别准确率为98.2%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b13/11965390/211bcf07ef76/41598_2025_95562_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验