Suppr超能文献

基于注意力机制的集成胶囊网络在不平衡数据样本下的滚动轴承故障诊断

Ensemble Capsule Network with an Attention Mechanism for the Fault Diagnosis of Bearings from Imbalanced Data Samples.

机构信息

Centre for Advances in Reliability and Safety, Hong Kong.

School of Machinery and Automation, Wuhan University of Science and Technology, Wuhan 430081, China.

出版信息

Sensors (Basel). 2022 Jul 25;22(15):5543. doi: 10.3390/s22155543.

Abstract

In order to solve the problem of imbalanced and noisy data samples for the fault diagnosis of rolling bearings, a novel ensemble capsule network (Capsnet) with a convolutional block attention module (CBAM) that is based on a weighted majority voting method is proposed in this study. Firstly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) method was used to decompose the raw vibration signal into different IMF signals, which are noise reduction signals. Secondly, the IMF signals were input into the Capsnet with CBAM in order to diagnose the fault category preliminarily. Finally, the weighted majority voting method was utilized so as to fuse all of the preliminary diagnosis results in order to obtain the final diagnostic decision. In order to verify the effectiveness of the proposed ensemble of Capsnet with CBAM, this method was applied to the fault diagnosis of rolling bearings with imbalanced and different SNR data samples. The diagnostic results show that the proposed diagnostic method can achieve higher levels of accuracy than other methods, such as single CNN, single Capsnet, ensemble CNN and an ensemble capsule network without CBAM and that it has stronger immunity to noise than an ensemble capsule network without CBAM.

摘要

为了解决滚动轴承故障诊断中数据样本不平衡和存在噪声的问题,本文提出了一种基于加权多数投票法的新型集成胶囊网络(Capsnet),该网络集成了卷积块注意力模块(CBAM)。首先,使用完备集合经验模态分解自适应噪声(CEEMDAN)方法将原始振动信号分解为不同的 IMF 信号,这些信号都是降噪信号。然后,将 IMF 信号输入到具有 CBAM 的 Capsnet 中,以便对故障类型进行初步诊断。最后,利用加权多数投票法融合所有初步诊断结果,以获得最终的诊断决策。为了验证所提出的集成 Capsnet 与 CBAM 的有效性,将该方法应用于不平衡和不同信噪比数据样本的滚动轴承故障诊断中。诊断结果表明,与单 CNN、单 Capsnet、集成 CNN 和没有 CBAM 的集成胶囊网络相比,所提出的诊断方法可以达到更高的准确性水平,并且比没有 CBAM 的集成胶囊网络具有更强的抗噪声能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2508/9332463/5adffb74c4ef/sensors-22-05543-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验