Suppr超能文献

基于集成视觉Transformer 模型的滚动轴承新型故障诊断方法。

A Novel Fault Diagnosis Method of Rolling Bearing Based on Integrated Vision Transformer Model.

机构信息

Key Laboratory of Metallurgical Equipment and Control Technology, Wuhan University of Science and Technology, Ministry of Education, Wuhan 430081, China.

Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.

出版信息

Sensors (Basel). 2022 May 20;22(10):3878. doi: 10.3390/s22103878.

Abstract

In order to improve the diagnosis accuracy and generalization of bearing faults, an integrated vision transformer (ViT) model based on wavelet transform and the soft voting method is proposed in this paper. Firstly, the discrete wavelet transform (DWT) was utilized to decompose the vibration signal into the subsignals in the different frequency bands, and then these different subsignals were transformed into a time-frequency representation (TFR) map by the continuous wavelet transform (CWT) method. Secondly, the TFR maps were input with respective to the multiple individual ViT models for preliminary diagnosis analysis. Finally, the final diagnosis decision was obtained by using the soft voting method to fuse all the preliminary diagnosis results. Through multifaceted diagnosis tests of rolling bearings on different datasets, the diagnosis results demonstrate that the proposed integrated ViT model based on the soft voting method can diagnose the different fault categories and fault severities of bearings accurately, and has a higher diagnostic accuracy and generalization ability by comparison analysis with integrated CNN and individual ViT.

摘要

为了提高轴承故障的诊断准确性和泛化能力,本文提出了一种基于小波变换和软投票方法的集成视觉变换器(ViT)模型。首先,利用离散小波变换(DWT)将振动信号分解为不同频带的子信号,然后通过连续小波变换(CWT)方法将这些不同的子信号转换为时频表示(TFR)图。其次,将 TFR 图分别输入到多个单独的 ViT 模型中进行初步诊断分析。最后,通过使用软投票方法融合所有初步诊断结果,得到最终的诊断决策。通过对不同数据集上的滚动轴承进行多方面的诊断测试,诊断结果表明,所提出的基于软投票方法的集成 ViT 模型可以准确诊断轴承的不同故障类别和故障严重程度,并且通过与集成 CNN 和单独 ViT 的比较分析,具有更高的诊断准确性和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed8a/9144877/3da68909d384/sensors-22-03878-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验